
Course Objectives:
The proposed curriculum addresses key issues in the theory of Databases:

- The conceptual model of databases includes the main tasks that solve the problems set;

- The logical model of the database includes the logical connections between the different data, which

are the basis of the developed database;

- A physical model of the databases is their physical realization (location, links and management of

information);

The objective of the course is to present an introduction to database management systems, with an

emphasis on how to organize, maintain and retrieve - efficiently, and effectively - information from a

DBMS.

The course considers different database models, but emphasizes the understanding of the fundamentals

of relational systems including data models, database architectures, and database manipulations.

The course also includes algorithms for query processing and optimization and some of the application

databases in different areas of bioinformatics.

ON-LINE DISTANCE COURSE ON

DATABASES

Learning Outcomes:
At the conclusion of the course, the student be able to:

- Produces an Entity-Relationship model from a realistic problem specification.

- Describes the conceptual schema of a database.

- Describes the physical schema of a database.

- Uses formal design techniques to produce a database schema.

- Applies normalization techniques.

- Prepares logical construction.

- Designs and applies database from the logical schema model.

- Manages a designed database.

- Arranges database using Relational algebra.

- Organizes database using SQL.

- Discusses the relative merits of the relational environment.

- Describe the fundamental elements of relational database management systems.

- Explain the basic concepts of relational data model, entity-relationship model, relational

database design, relational algebra and SQL.

- Work as a valuable member of a database design and implementation team.

STRUCTURE OF THE ON-LINE DISTANCE COURSE ON DATABASES

COURSE - 140 hours

MODULES – 5 modules

TOPICS – 21 topics

LESSONS – 47 lessons

 COURSE Duration Comment

 DATABASES 140 hours

 Title of the module/ topic/ lesson

MODULE

(GROUP

OF

TOPICS)

(5 modules)

1. Theoretical basis of Databases 24

Topics

included

in the

module

1. Basic concepts 6

Lessons 1. Introduction to database 3

2. Introduction to database management system (DBMS) 3

2. Logical and physical bases of databases 6

Lessons 1. Logical foundations of databases 3

2. Physical foundations of databases 3

3. Data models 6

Lessons 1. What is a Database Model. Types of data models. 3

2. Database Languages in DBMS: Data description languages.

Data manipulation languages.

3

4. Basic search methods. File types. 6

Lessons 1. Basic search methods 3

2. Types of database files 3

2. Relational approach in databases 30

Topics

included

1. Relational model - basic concepts, relational schemes 6

Lessons 1. Relational approach. Relational model 3

2. Relational algebra 3

in the

module

2. Relational languages 6

Lessons 1. Relational languages. Types of Relational Languages. 3

2. SQL Relational language. Data selection. Built-in functions.

Data updating.

3

3. Relational systems 6

Lessons 1. Basic characteristics and classification of relational systems 3

2. Relational schema analysis. Functional dependencies 3

4. Development of a sample database. Normalization. 6

Lessons 1. Normalization of relational schemas. Normal forms. 3

2. Decomposition and synthesis of relational schemas.

Normalization algorithm by decomposition. Algorithm for

synthesis of relational schemas.

3

5. Object-oriented database systems 6

Lessons 1. The essence of objects. Basic concepts in the object-oriented

approach.

3

2. Object-oriented database management systems. Architecture. 3

3. Algorithms and their applications in databases for query optimization 38

Topics

included

in the

module

1. Introduction to algorithms 8

Lessons 1. The role of algorithms in computation. Algorithms as a

technology.

2

2. Design and analysis of algorithms 3

3. Complexity of algorithms. Types of complexity and their

estimation

3

2. Strategies in Algorithm Design 12

Lessons 1. Divide and Conquer Paradigm in Algorithms 3

2. Dynamic programming 3

3. Heuristic and probability algorithms 3

4. Greedy algorithms. Examples 3

3. Sorting algorithms 6

Lessons 1 Sorting algorithms - part I (Insertion sort, Selection sort,

Bubble method).

3

2 Sorting algorithms - part II (Linear time sort - Quick sort.

Merge sort. Heap sort.)

3

4 Graph algorithms 12

Lessons 1. Introduction to graph algorithms 3

2. Tree Cover of Graphs 3

3. Shortest Path Algorithms 3

4. Maximum flow in graph 3

4. Biological Databases 24

Topics

included

in the

module

1. Amino acids, peptides and proteins 6

Lessons 1. Amino acids 3

2. Peptides and proteins 3

2. Primary and Secondary Databases of Protein. 3D structure

protein databases.

6

Lessons 1. Primary and Secondary Databases of Protein 3

2. 3D structure protein databases 3

3. Gene databases 6

Lessons 1. Types of genome databases 3

2. Application of gene databases 3

4 KEGG: Kyoto Encyclopedia of Genes and Genomes – high-

level functions and utilities of the biological system

6

Lessons 1. KEGG Database 3

2. KEGG Software 3

5. Practice 24

Topics

included

in the

module

1. Introduction to the computer program MS Access. Use of

tables, subforms, filters and reports.

6

Lessons 1. Basic concepts in databases. Introduction to the computer

program MS Access.

3

2. Use of tables and subforms. Using filters and reports. 3

2. Maintaining database changes. Ensuring the reliability of

information in the database.

6

Lessons 1. Maintaining database changes 3

2. Ensuring the reliability of information in the database 3

 3. Creation of a query. Use of queries. 6

Lessons 1. Creation of a query 3

2. Use of queries 3

4 Merging of data into one form. Presentation of an effective

report.

6

Lessons 1. Merging of data into one form 3

2. Presentation of an effective report 3

ON-LINE DISTANCE COURSE ON

DATABASES

❑ Module 1. Theoretical basis of Databases

❑ Topic 1. Basic concepts

❑ Lesson 1. Introduction to database

INTRODUCTION TO DATABASE

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

Introduction

• The term database (DB) appears in the early
1960s, but it is not known who first used it in
connection with computer processing of data.

• The ideas of C. Bachmann, reflected in two of his
publications from 1964 and 1965, are also
fundamental. With them he posed the first
problems of a new field in informatics, which is
known today as "Database Management".

Introduction
• At the same time, specialists from other places

began to work on database management issues,
and large software companies, in their strive for
leadership in this field, quickly turned to the
program implementation of the first modern
database management systems (DBMS).

• A DBMS is a powerful tool for creating and
efficiently managing large amounts of data. Data
must be maintained and stored for as long as
necessary. Lesson 2 will go over DBMS in depth.

WHAT IS DATABASE

• It is difficult to give a concise and precise definition
of the term DB and perhaps this explains the chaos
of its various interpretations.

• The continued evolution of the concept itself may
also have contributed to the formation of different
opinions.

• The perception of the specialists who first
considered this question is that:

- A DB is a collection of files;

WHAT IS DATABASE
– The file is a set of records;

– the record consists of one or more keys and data.

• This definition is still acceptable to many DBMS
developers and users.

• However, it does not depicts the most important
property that is claimed for each DB.

• The point is that the DB should be built as an
integrated set of data.

WHAT IS DATABASE

• There is a deep meaning in this property of the DB,
which is first of all used to express the way the DB
is used and managed.

• The fact that a DB is an integrated data set means
that it contains data for different applications
(users), not just for one, as is often seen in practice.

• However it doesn’t mean that each user uses the
entire data set or that he must know the work of
the others.

WHAT IS DATABASE

• Most commonly, each user is only interested in
certain parts of the DB, using their application
programs to retrieve and process data, enter new,
update or remove existing data in the DB.

• It is also interesting to note that different
application programs can use the same subset of
DB data.

WHAT IS DATABASE

• Consider an example: In one organization, four
computer systems have been set up for the needs of
the “Human resources”, “Accounting”, “Research
Projects” and “International Cooperation”
departments.

• Each of these systems supports one data file. Some
of the fields of these files are represented by a table:

WHAT IS DATABASE
File “Personnel” File “Salary”

1. Office number

2. Name of employee

3. Department

4. Date of commencement of work

5. Education

6. Speciality

1. Office number

2. Name of employee

3. Department

4. Duration of employment

5. Base salary

6. Family status

File “Projects File “Business trips”

1. Task

a) Number

b) Name

2. Task manager

a) Office number

b) Name of employee

c) Department

d) Position

3. Period

a) Date of beginning

b) Date of ending

4. Financing organization

5. Periods

6. Lead organization

7. Way of reporting

1. Office number

2. Name of employee

3. Department

4. Type of business trip

5. Destination

6. Number of days

7. Task

WHAT IS DATABASE
• Quite a few of the fields of each file are contained

in other files. Naturally, this leads to
inconveniences:

1. Extra expenditure of resources for multiple
duplication of data entry in different files. For
example, if Person A starts work, this fact must be
reflected in the “Personnel” and “Salary” files.
However, if Employee A subsequently becomes
manager of a certain task, some of the data about
him in the "Personnel" file must also be entered in
the "Project" file.

WHAT IS DATABASE
2. Changing the date of any employee will require
multiple changes to individual files. On the one hand,
this means that there will be again unnecessary
expenditure of funds. On the other hand, making
changes to individual files generally leads to
inconsistencies in the data of individual systems at
some point. It may be that Employee A has left the
organization and this is reflected in the Personnel file
but not in the Payroll file. It is possible for an employee
to change her last name due to marriage and for a
period of time she may appear under two different
names in the Personnel and Salary files.

WHAT IS DATABASE
 System “Human Resources”

 System “Accounting”

 System “Accounting”

 System “Research projects”

 System “International Cooperation”

P1 Application

 Programs
File “Personnel”

P2 Application

 Programs
File “Salary”

P3 Application

 Programs
File “Projects”

P4 Application

 Programs
File “Business trips”

se
p

ar
at

e
fi

le
s

WHAT IS DATABASE

• One reasoned solution for curing the above

mentioned weaknesses in the four systems

(figure above) work is to reorganize their work by

merging (integrating) the data they store into a

single data archive or, as is often said, by creating

an integrated DB in the relevant organization.

WHAT IS DATABASE

in
te

gr
at

ed
se

t
o

f
d

at
a

WHAT IS DATABASE

• The approach aiming at creating an unified data
archive and it’s centralized managing has a
number of advantages.

• The available opportunity to create conditions for
continuous expansion and modification of the DB
should be highlighted.

WHAT IS DATABASE
• The point of this approach should be sought in

the ability to make extensions and modifications
to the DB by simple means, without disrupting
the functions of existing application programs,
and this should be the most essential
consideration for the creation of any DB.

• The DB must be a dynamic and constantly
evolving set of data, allowing its applications to
change and expand over time. The debate on
these issues boils down to the so-called the issue
of data independence.

WHAT IS DATABASE

• Database - a set of data structured in a way that
allows easy and quick retrieval, review, search
and minimizes duplication of information.

• A characteristic of databases is that the data is
independent of the software. This makes them
versatile for use both by different programs and
in different time periods.

DATA INDEPENDENCE
• Let's go back to the example. Suppose that in

application programs P1 the value of the field “Office
Number" is a non-negative integer, while in
application programs P2 the field is described as a
character string.

• When merging the data into a single archive, it is
natural for a contradiction to arise due to the
dependency of the programs on the “Office number"
field type.

• There are ways to overcome this contradiction and
one of them is to make appropriate changes to the
P1 and P2 programs.

DATA INDEPENDENCE
• However, this approach is not satisfactory because not

only does it involve additional expenditure, but new
changes in the data will again require changes in the
relevant programs.

• The independence between programs and data must
be two-sided.

• This means that modifications related to the
organization of data in external memory should not
lead to modifications in application programs and,
contrary, modifications in user programs related to the
description of the data being used should not affect
the way data is stored in the DB.

DBS: Definitions and Rationale
• A database system (DBS) is a computerized record-

keeping system with the overall purpose of maintaining
information and making it available whenever
required. The database typically stores related data in a
computer system.

• Components of a DBS include:

◾ Hardware and operating system

◾ DBMS

◾ Database

◾ Related software systems and/or applications

◾ Users — including technical users and end users

DBS: Definitions and Rationale
• Database users communicate with the software

systems/applications, which in turn communicate (through the
programming interface) with the DBMS. The DBMS communicates
with the operating system (which in turn communicates with the
hardware) to store data in and/or extract data from the database,
which is illustrated in Figure:

DBS: Definitions and Rationale
• Databases are essential to software engineering; many software

systems have underlying databases that are constantly accessed,
though in a manner that is transparent to the end-user.

DBS: Definitions and Rationale
• Companies that compete in the marketplace need

databases to store and manage their mission-critical
data and other essential data.

• What would life be like without contemporary
database systems? If you know someone who is old
enough, ask him/her about such an era of filing
cabinets, hand-written records, or typewriter-
generated documents. Life was very slow then, but it
was the norm.

• There are several primary and secondary objectives
of a database system that should concern the
computer science.

DBS: Conclusion
• The primary objectives of a database system include

the following:
– Security and protection — prevention of unauthorized users; protection from inter-

process interference

– Reliability — assurance of stable, predictable performance

– Facilitation of multiple users

– Flexibility — the ability to obtain data and effect action via various methods

– Ease of data access and data change

– Accuracy and consistency

– Clarity — standardization of data to avoid ambiguity

– Ability to service unanticipated requests

– Protection of the investment — typically achieved through backup and recovery
procedures

– Minimization of data proliferation — new application needs may be met with existing
data rather than creating new files and programs

– Availability — data is available to users whenever it is required

DB: Conclusion
• In addition to the above, there are some additional

objectives that one may argue are just as important:
– Physical data independence — storage hardware and storage techniques are insulated

from application programs

– Logical data independence — data items can be added or subtracted, or the overall
logical structure modified, without affecting existing application programs that access
the database

– Control of redundancy — the general rule is to store data minimally and not replicate
that storage in multiple places unless this is absolutely necessary

– Integrity controls — range checks and other controls must prevent invalid data from
entering

– the system

– Clear data definition — it is customary to maintain a data dictionary that unambiguously
defines each data item stored in the database

– Suitably user-friendly interface — be it graphical, command based, or menu based

– Tunable — easily reorganizing the database to improve performance without changing
the application programs

– Automatic reorganization or migration to improve performance

Questions and exercises:

1. What is a Database and what is its utility?

2. Explain a few advantages of a Database.

3. What is a DBMS and what is its features?

4. What is a DBS and what are its components?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 1. Theoretical basis of Databases

❑ Topic 1. Basic concepts

❑ Lesson 2. Introduction to database management
system (DBMS)

INTRODUCTION TO DATABASE

MANAGEMENT SYSTEM (DBMS)

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

DBMS
• Any database management system is a software

system whose purpose is to create and manage the
data organized in a database.

• Management here means searching and processing
data and keeping it up to date.

• The last function of the DBMS requires the presence of
operations for adding new data, modifying and
removing existing data in the DB.

• The proper functioning of a DBMS requires that it
provides the DB requirements described in the
previous paragraphs:

DBMS
– separation of the data description from their

processing;

– logical and physical independence;

– minimal data redundancy in the DB;

– convenient and with great expressive power user
interface;

– efficient processing of requests

– ensuring the integrity of the data in the DB, i. e.
ensuring logical consistency in the DB and the
appropriate confidentiality of individual users' data.

DBMS
• From a user perspective, a DBMS must have the

following properties:

– persistent memory - data must be stored
independently of processes; databases must
allow efficient access to very large volumes of
data - the access time to the data must be
independent of its volume;

– program interface - the DBMS provides a
powerful query language for the user or the
application program that uses the data;

DBMS
• From a user perspective, a DBMS must have the

following properties:

– transaction management - the DBMS supports
simultaneous access to data; it is implemented
through multiple processes called transactions; each
user who works with the data must initiate such a
process; The DBMS maintains transaction isolation -
each transaction is atomic, i. e. it either completes
in full or is rejected in full; if a problem occurs
during the execution of a transaction it is canceled,
along with any changes it has caused to the
database;

DBMS

• From a user perspective, a DBMS must have the
following properties:

– data stability - data must be recoverable in the
event of failures or errors; of coarse, this
involves additional reading and writing
operations.

• Architecturally, a DBMS must provide the following
functions:

DBMS

• Architecturally, a DBMS must provide the following
functions:

– The DBMS allows user to create new databases;
for this purpose, the user sets the scheme of the
database; the scheme is a logical data structure
and it is described using a special data definition
language (DDL); this language is symbolic or
graphic;

DBMS

• Architecturally, a DBMS must provide the following
functions:

– The DBMS must provide the ability to search in
the data and to modify the data; this is achieved
using a data manipulation language (DML); the
query language is a sublanguage of the data
manipulation language that is used when
searching for data;

DBMS

• Architecturally, a DBMS must provide the following
functions:

– The DBMS must store very large volumes of data
safely and long-term; storage must ensure
efficient searching and modification of data;

– The DBMS must manage simultaneous access to
data by multiple users - they must not interact
with each other and destroy the integrity of the
data.

11

Simplified picture of a database system

12

Performance levels of the DB

Internal (physical) level

Conceptual level

13

Example of Functional scheme

of DBMS

14

Front-end and back-end perspectives.

DBMS
• So, we can assume that the DB is a collection of logical

files of individual users, and that the DB is a collection
of data files stored in external memory, i. e. we have a
logical and a physical DB.

• What is interesting in this case is that both logical and
physical DBs can change without one affecting the
other.

• To enable this independence in the behavior of the two
DBs, an intermediate level of data representation is
introduced. It is known by the name conceptual model
or conceptual scheme, and most often just a scheme
of the DB.

DBMS

• The scheme is a general logical description of the
DB.

• It contains names of objects, descriptions of some
of their characteristics, and the relationships that
exist between them.

• It is created and kept up-to-date by specialists
called by the common name of DB administrator.

DBMS

DBMS

• In the presence of a DB scheme, changes made in
the logical DB (in the logical files) are reflected in
the DB scheme, but do not affect the way data is
stored in the physical DB or in other application
programs.

• Similarly, changes in the way data is stored and
accessed in the physical DB will not cause changes
in the logical files, i. e. in the application programs.

DBMS - Conclusion
• The database management system (DBMS) is the

software that facilitates the creation and management

• of the database. When a user issues a request via
some DSL (typically SQL), it is the DBMS that interprets
such a request, executes the appropriate instructions,
and responds to the request.

• Depending on the nature of the initial request, the
response may be relayed (by the DBMS) directly to the
end user or indirectly to the end user via an executing
application program.

DBMS - Conclusion
• Through the DBMS, the objectives of the DBS that were

mentioned in Lesson 1 are achieved. The primary functions of
this very important software system include the following:
– Data definition (relation, dependencies, integrity constraints, views, etc.)
– Data manipulation (adding, updating, deleting, retrieving, reorganizing, and aggregating

data)
– Data security and integrity checks
– Management of data access (including query optimization), archiving, and concurrency
– Maintenance of a user-accessible system catalog (data dictionary)
– Support of miscellaneous non-database functions (e.g., utilities such as copy)
– Programming language support
– Transaction management (either all changes are made or none is made)
– Backup and recovery services
– Communication support (allow the DBMS to integrate with underlying communications

software)
– Support for interoperability including open database connectivity (ODBC), Java database

connectivity (JDBC), and other related issues

DBMS - Conclusion
• Optimum efficiency and performance are the hallmarks of a

good DBMS. To illustrate the critical role of the DBMS, consider
the steps involved when an application program accesses the
database:
– Program-A issues a request to the DBMS (expressed in terms of sub-schema

language).
– DBMS looks at Program-A sub-schema, schema, and physical description (this

information is stored in tables).
– DBMS determines the optimal way to access the data, determining which files

must be accessed, which records in the files are needed, and the best method to
access DBMS issues instruction(s) (reads or writes) to the operating system.

– Operating system causes data transfer between disk storage and main memory.
– DBMS issues move to transfer required fields.
– DBMS returns control to Program-A (possibly with a completion code).
– Database Systems.

DBMS - Conclusion
• Figure bellow provides a graphic representation, but bear in mind that these steps are

carried out automatically in a manner that is transparent to the user:

DBMS - Conclusion
• The DBMS is actually a complex conglomeration of software

components working together for a set of common objectives. For the
purpose of illustration, we may represent the essential components of
the DBMS as the following:

• DBMS Engine

• Data Definition Subsystem

• User Interface Subsystem

• Application Development Subsystem

• Data Administration Subsystem

• Data Dictionary Subsystem

• Data Communications Manager

• Utilities Subsystem

DBMS - Conclusion
• These functional components are not necessarily tangibly identifiable,

but they exist to ensure the acceptable performance of the DBMS:

Functional components of a DBMS.

DBMS - Conclusion
• The DBMS engine is the link between all other subsystems and the

physical device (the computer) via the operating system. Some
important functions are as follows:

– Provision of direct access to operating system utilities and programs (e.g.,
input/output requests, data compaction requests, communication requests, etc.)

– Management of file access (and data management) via the operating system

– Management of data transfer between memory and the system buffer(s) in order
to effect user requests

– Maintenance of overhead data and metadata stored in the data dictionary
(system catalog)

Questions and exercises:

1. What is DBMS and what is its utility?

2. Explain a few advantages of a DBMS.

3. What is difference between file system and
DBMS ?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON
DATABASES

❑Module 1. Theoretical basis of Databases

❑ Topic 2. Logical and physical bases of databases

❑ Lesson 1. Logical foundations of databases

LOGICAL FOUNDATIONS OF
DATABASES

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

INTRODUCTION

❑ Database design process has two main phases:

❑ Logical database design;

❑ Physical database design.

Database Design

❑ Logical database design
❑ Process of constructing a model of information used in

an enterprise based on a specific data model (e.g.
relational), but independent of a particular DBMS and
other physical considerations.

❑ Physical Design
❑ Process of producing a description of the

implementation of the database on secondary storage
❑ it describes the base relations, file organizations, and indexes

design used to achieve efficient access to the data, and any
associated integrity constraints and security measures.

Purpose of Database Design

❑ Structure the data in stable structures, called
normalized tables
❑ Not likely to change over time

❑ Minimal redundancy

❑ Develop a logical database design that reflects actual
data requirements

❑ It forms the base for a physical database design

Purpose of Database Design

❑ Translate a relational database model into a
technical file and database design that balances
several performance factors

❑ Choose data storage technologies that will
efficiently, accurately and securely process
database activities

Process of Database Design

❑ Logical Design
❑ Based upon the conceptual data model

❑ 4 key steps

1. Develop a logical data model for each known user interface for the
application using normalization principles.

2. Combine normalized data requirements from all user interfaces into one
consolidated logical database model.

3. Translate the conceptual E-R data model for the application into
normalized data requirements.

4. Compare the consolidated logical database design with the translated E-R
model and produce one final logical database model for the application.

8

Process of Database Design

• Physical Design

• Based upon results of logical database design

• Key decisions

1. Choosing storage format for each attribute from the logical
database model

2. Grouping attributes from the logical database model into physical
records

3. Arranging related records in secondary memory (hard disks and
magnetic tapes) so that records can be stored, retrieved and updated
rapidly

4. Selecting media and structures for storing data to make access more
efficient

Deliverables and Outcomes

• Logical database design must account for every data
element on a system input or output

• Normalized relations are the primary deliverable

• Physical database design results in converting relations
into files

Relational Database Model

• Data represented as a set of related tables or relations

• Relation

• A named, two-dimensional table of data. Each relation
consists of a set of named columns and an arbitrary number of
unnamed rows

• Properties
• Entries in cells are simple

• Entries in columns are from the same set of values

• Each row is unique

• The sequence of columns can be interchanged without changing the
meaning or use of the relation

• The rows may be interchanged or stored in any sequence

Designing Forms and Reports

• System inputs and outputs are produced at the end
of the analysis phase
• Precise appearance was not defined during this phase

• Forms and reports are integrally related to DFD
(Entity Relationship Diagram) (Data Flow
Diagram) and E-R diagrams

DFD and E-R diagram is a visual representation of information flows within your application. It
shows how information enters and leaves the application, what changes the information and

where information is stored.

Designing Forms and Reports:
Key Concepts

• Form
• A business document that contains some predefined data and may

include some areas where additional data are to be filled in

• An instance of a form is typically based on one database record

• Report
• A business document that contains only predefined data

• A passive document for reading or viewing data

• Typically contains data from many database records or transactions

Vs

The Process of Designing Forms and Reports

• User-focused activity

• Follows a prototyping approach

• Requirements determination
• Who will use the form or report?

• What is the purpose of the form or report?

• When is the report needed or used?

• Where does the form or report need to be delivered and used?

• How many people need to use or view the form or report?

The Process of Designing Forms
and Reports
• Prototyping

• Initial prototype is designed from requirements

• Users review prototype design and either accept
the design or request changes

• If changes are requested, the construction-
evaluation-request cycle is repeated until the
design is accepted

A data input screen designed in Microsoft Access

Deliverables and Outcomes

• Design specifications are major deliverable
and contain three sections

1. Narrative

2. Screen Design

3. Testing and usability assessment

General Formatting Guidelines for Forms and
Reports

•Highlighting
• Use sparingly/ carefuly to draw user to or away from

certain information

• Blinking and audible tones should only be used to highlight
critical information requiring user’s immediate attention

• Methods should be consistently selected and used based
upon level of importance of emphasized information

General Formatting Guidelines for Forms
and Reports

General Formatting Guidelines for
Forms and Reports

•Displaying tables and lists
• Labels

• All columns and rows should have
meaningful labels

• Labels should be separated from other
information by using highlighting

• Redisplay labels when the data extend
beyond a single screen or page

General Formatting Guidelines for
Forms and Reports
• Displaying tables and lists (continued)

• Formatting columns, rows and text
• Sort in a meaningful order

• Place a blank line between every 5 rows in long columns

• Similar information displayed in multiple columns should be
sorted vertically

• Columns should have at least two spaces between them

• Allow white space on printed reports for user to write notes

• Use a single typeface, except for emphasis

• Use same family of typefaces within and across displays and
reports

• Avoid overly fancy fonts

General Formatting Guidelines for
Forms and Reports
• Displaying tables and lists (continued)

• Formatting numeric, textual and alphanumeric
data

• Right-justify numeric data and align columns by
decimal points or other delimiter

• Left-justify textual data. Use short line length,
usually 30 to 40 characters per line

• Break long sequences of alphanumeric data into
small groups of three to four characters each

Designing Interfaces and Dialogues

• Focus on how information is provided to and
captured from users

• Dialogues are analogous to a conversation between
two people

• A good human-computer interface provides a
uniform structure for finding, viewing and invoking
the different components of a system

The Process of Designing
Interfaces and Dialogues

• User-focused activity

• Similar to form and report designing process

• Employs prototyping methodology
• Collect information
• Construct prototype
• Assess usability
• Make refinements

The Process of Designing
Interfaces and Dialogues

•Deliverables
•Design Specifications
•Narrative
•Sample Design
•Testing and usability
assessment

Designing Interfaces

•Designing Interfaces

1. Designing layout,

2. Structuring and

3. controlling data entry field,

4. providing feedback,

5. designing online help

Designing Layouts

• Designing Layouts

• Standard formats similar to paper-based
forms and reports should be used

• Screen navigation on data entry screens
should be left-to-right, top-to-bottom as
on paper forms

Designing Layouts
• Flexibility and consistency are primary design

goals

➢Users should be able to move freely between
fields (e.g. back & Forth)

➢Data should not be permanently saved until
the user explicitly requests this

➢Each key and command should be assigned to
one function

Structuring Data Entry

Entry

Never require data that are already online or that can be

computed (date, age, total sale…)

Defaults Always provide default values when appropriate (product price)

Units Make clear the type of data units requested for entry

Captioning Always place a caption adjacent to fields (dd/ mm/yyyy)

Format Provide formatting examples (decimal place, comma, $)

Justify Automatically justify data entries

Help Provide context-sensitive help when appropriate

Controlling Data Input

• One objective of interface design is to reduce data entry
errors

• Role of systems analyst is to anticipate user errors and
design features into the system’s interfaces to avoid,
detect, and correct data entry mistakes

• Table 8-9 describes types of data entry errors

• Table 8-10 lists techniques used by system designers to
detect errors

Example

• Suppose that the marketing manager at Pine Valley Furniture
(PVF) wants sales and marketing personnel to be able to review
the year-to-date transaction activity for any PVF customer

• The Dialogue sequence

• 1. Request to view individual customer information

• 2. Specify the customer of interest/select customer

• 3. Select the year-to-date transaction summary display

• 4. Review customer information

• 5. Leave system

33

Conclusion
• Logical database design is the process of deciding how to arrange

the attributes of the entities in a given business environment into
database structures, such as the tables of a relational database.

• The goal of logical database design is to create well structured
tables that properly reflect the company's business environment.

• Logical Database Design has a low-level description of entities that
are defined and how they are related to each other and what kind of
data is to be stored.

• This model determines if all the requirements of the business have
been gathered.

• The logical data model represents all user views of a database.

35

https://www.dictionary.com/browse/conclusion

Questions and exercises:

1. What is logical design of database ?

2. Who are 4 key steps of logical database design ?

3. What is the part designing Interfaces from logical
database design ?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑Module 1. Theoretical basis of Databases

❑ Topic 2. Logical and physical bases of databases

❑ Lesson 2. Physical foundations of databases

PHYSICAL FOUNDATIONS OF

DATABASES

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

INTRODUCTION

• The data in a database is organized into logical components

visible to users.

• The database is also physically implemented as two or more files

on disk.

• When using a database, you work primarily with logical elements

such as tables, views, procedures, and users.

• The physical implementation of files is mostly transparent.

Usually only the database administrator needs to work with the

physical implementation.

INTRODUCTION

INTRODUCTION
• Typical computer

system has several

various components where

the data can to store.

• These components have

data capacity, varying in different

order and also have different

access speeds to the data.

The hierarchy of memory

FILES. BASIC CONCEPTS.

➢ RECORDS

• Objects of the same class are described by the same set of

attributes.

• Each attribute can receive values from a strictly-defined set of

values called the attribute's area.

• The set of values of the individual attributes of a class represents

a particular object-sample of that class, often called a record.

• The following figure gives examples of library index-slips, each

of which represents a separate copy - a book.

FILES. BASIC CONCEPTS.
➢ RECORDS

Presentation of library slips as a record of fields

FILES. BASIC CONCEPTS.

➢ RECORDS

• The data units (attribute values) that make up the records are also

called fields.

• Characteristic of each field is its length. In the external

representation of the record, this length is measured in number of

characters, and in the internal representation - in number of bytes.

• Thus the total length of the record is the sum of the lengths of the

individual fields.

• Most often, the length of the individual records concerning the

different copies of the object class is the same. Such records are

called fixed-length records.

FILES. BASIC CONCEPTS.

➢ RECORDS

• There are also cases where variable length records are used. This

is required in cases where:

а) one or more of the fields are with variable length;

б) one or a group of fields repeated several times;

в) some of the fields are variable.

• Let the summary attribute be added for each book. The content of

the corresponding field of each slip will be text whose length

cannot be predetermined. Such a field is called a variable length

field.

FILES. BASIC CONCEPTS.

➢ RECORDS

• Very often, in order to briefly describe the content of a book or

article, keywords are used instead of a summary. The number of

keywords referring to individual books usually varies. When it is

necessary to characterize the content of the book more precisely,

more keywords are used.

• It can be assumed that the keyword attribute has character strings

for values, for instance 16 characters long, but for different books

the number of keywords will be different.

FILES. BASIC CONCEPTS.

➢ RECORDS

• A field or group of fields (usually of fixed length) that may occur

one or more times in the same record is called a repeating group.

• Except books, journals are also kept in libraries. Some of the

attributes of books and journals are common, but there are also

attributes that are different.

• If necessary, books and journals can be considered as objects

(copies) of the same class.

FILES. BASIC CONCEPTS.

➢ RECORDS

• This makes entries with two different formats corresponding to

books and journals.

• Such records are called variable format records or also variant

records.

Each row of a table is called a record. Records are where individual

pieces of information are stored. Each record consists of one or

more fields. The fields correspond to the columns in the table.

FILES. BASIC CONCEPTS.

➢ FILES

• The set of records corresponding to objects of the same class is

called a file.

• It is also said that files are used to store on external memory sets

of identical data. Each file can be considered as a two-

dimensional table.

• The rows in the table represent records and their number

determines one of the file dimensions. There are files whose

number of records varies from a few records to several hundred

thousand records.

FILES. BASIC CONCEPTS.

➢ FILES

• The way in which the individual records are arranged to each

other in the file determines the organization of the file.

• Sometimes, except the actual data, additional information is

stored within or outside the files to make it easier to find

individual records.

• The records in the file are searched by specifying certain

properties that the desired records must have.

• When formulating these properties, attribute names used in

describing the object class are specified.

FILES. BASIC CONCEPTS.

➢ FILES

• It is customary to refer to the attributes by which a file record is

searched or sorted as keys.

• A key whose values uniquely identify records in the entire file is

a primary key.

• Very often the primary key is defined by a single attribute, but

there are cases where it consists of multiple attributes. In such

case, the primary key is called a composite key.

FILES. BASIC CONCEPTS.

➢ FILES

• The way records are searched and selected in the file determines

the access method.

• There are two main types of access method:

– consistent access method

and

– key access method.

• The most used methods of the second type are the methods of

access by hashing and by indexing.

• File management is done by a special system called a file system.

FILES. BASIC CONCEPTS.
➢ FILES

Each file system includes a core of basic operations and a set of different access

methods:

General View of a file system architecture

FILES. BASIC CONCEPTS.

➢ FILE

• Basic operations are file creation and destruction, disk space

allocation, maintaining a catalog for all files in a disk bundle, and

managing input-output buffers.

• These operations are used by all access methods that represent an

upgrade of the core.

• Each of the access methods interacts with the data from the

corresponding files by means of I/O operations to read or write

physical records (blocks).

FILES. BASIC CONCEPTS.

➢ FILES

• Usually a block contains several (logical) records and in such

case we talk about record blocking.

• However, there are cases where a record is placed on more than

one block (see figure on next slide)

Modern file systems include a variety of access methods.

FILES. BASIC CONCEPTS.

➢ FILES

Physical and logical records
а – blocking records. Blocking coefficient К = 5;

b – no blocking records;
c - one logical record is located on two blocks.

PHYSICAL DATA ORGANISATION TASKS.

• A major problem to be solved when creating a concrete physical

DB is how the various data structures (tables, trees, grids, etc.)

will be physically represented in sequences of bits.

• As a consequence of this task, several other problems are solved:

1. How to determine the location of the corresponding physical

record by a given key and possibly in minimum time?

• In fact, this task leads to establishing a correspondence (rule,

procedure, function) between the set of allowable key values for a

given SK file (key space) and the set of available addresses from

a given external memory area SA.

PHYSICAL DATA ORGANISATION TASKS.

• The correlation may be defined directly by a function, in which

case it is called a direct access method, and in other cases an

additional table called an index may be used, in which case it is

called an index access method.

Correlation between
the set of classes and
the set of addresses

PHYSICAL DATA ORGANISATION TASKS.

• The other subtasks, which are a consequence of the main task,

can be briefly formulated as follows:

2. How to organize the data so that multi-key search is possible and

performed efficiently?

3. What should be the physical representation of the hierarchical

and network structures and what should be the methods for

performing various operations, including the update operation?

4. What should be the physical representation of the data where

minimum memory is used, i. e. the representation should be of

maximum density?

PHYSICAL DATA ORGANISATION TASKS.

• Solving some of these tasks optimally leads to less efficient

solutions of some of the others.

• This is a consequence of the contradiction that exists in the

requirements between the individual tasks.

• Therefore, in the specific design of the physical DB we have to

make certain compromises, allowing us to optimally solve the

problems of interest in this case.

From the basic requirements for the physical organization of data, it

is clear that the storage method and the method (algorithm) for

accessing the data stored in external memory are the most

significant factors that affect the performance of a DBMS.

PHYSICAL DATA ORGANISATION TASKS.

• Therefore, these characteristics of the internal schema of each

DBMS are evaluated with respect to both access efficiency and

data storage efficiency.

• Access efficiency is defined as a reciprocal value of the average

number of I/O operations required to retrieve a logical record

from the database.

• Storage efficiency is defined as a reciprocal value of the average

amount of bytes of external memory required to represent one

byte of input data.

PHYSICAL DATA ORGANISATION TASKS.

• It should be kept in mind here that the physical representation of

logical files uses additional tables and control information,

reserves more free memory than is needed at the time, etc.

• The most commonly used access methods in modern DBMSs are

sequential, index, inverted and hashing access methods, which

will be discussed in the next lecture.

Questions and exercises:

1. What is physical implementation of files in
database ?

2. What are the various components where the
data can to store in typical computer system
has several ?

3. What is organization of the file ?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑Module 1. Theoretical basis of Databases

❑ Topic 3. Data models

❑ Lesson 1. What is a Database Model. Types of data
models.

WHAT IS A DATABASE MODEL. TYPES OF

DATA MODELS.

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

Introduction

• The idea of a "data model" is one of the most fundamental in

the study of database systems. In this lecture we will define

some basic terminology and mention the most important data

models.

• Today, mathematical, cybernetic, economic, physical and

many other models from different fields of knowledge are

known and studied.

• Models are created in the form of drawings, constructions,

texts, schemes, equations, algorithms, etc.

Introduction

• The scheme of each DB is also a model.

• It is a model of a particular subject area, represented by

descriptions of a finite number of real-world objects and the

relationships that exist between them.

• Data models (DM) have a more specific purpose. They are

used for DB schemes, i. e. the means of DM are used to create

models of objects for which data are stored and processed by

computers.

Introduction

• Here we will focus on the concept of DM

and its relation to the concept of DB.

• The organization of the data in each DB

is one of its most important features and

it is directly related to the used model.

What is a data model?

• A data model is a notation (notation system) for describing

data or information. The description usually consists of three

parts:

1. Data structure. You may be familiar with tools in

programming languages such as C or Java for describing the data

structure used by a program: arrays and structures or objects, for

example. The data structures used to represent data in a computer

are sometimes qualified, when discussing database systems, as a

model for the physical data, although in reality they are far away

from the way in which the physical data is really represented.

What is a data model?
In database world, data models are at a slightly higher level than

data structures, and are sometimes referred to as a conceptual

model to highlight the difference in the level.

2. Operations on data. In programming languages, operations on

data are in general something that can be programmed. For data

models in databases, there is usually a limited set of operations that

can be performed. Usually we can perform a limited set of queries

(operations that retrieve information) and modifications (operations

that change information in the database). This limitation is not a

weakness but a strength. By constraining the operations, it is

possible for programmers to describe database operations at a very

high level, database management systems to implement operations

efficiently are known.

What is a data model?

3. Data restrictions. Data models in databases usually have a way

of describing constraints on what the data can be. These constraints

can range from simple (e. g. , "a day of the week is an integer

between 1 and 7" or "a movie has at most one title") to some very

complex constraints.

Important types of data models

• Today, the two data models are of fundamental importance for

database systems:

1. The relational model, including object-relational extensions.

2. Semi-structured model including XML and related standards.

✓ The first one (relational model), which is present in all

commercial database management systems, is the subject of this

course and will be discussed in detail in a separate lecture.

✓ The semi-structured model, of which XML is the main procedure,

is an added feature of most relational DBMSs, and appears in a

number of other contexts as well.

OBJECTS AND THEIR DESCRIPTION
• Each database consists of objects that are linked together. These

relationships are depicted in the database by specifying relations

between objects and their characteristics.

• Data for objects of the same type are placed in tables. Each row

of the table contains the data for one object (record) and each

column (field) contains the corresponding object characteristics.

OBJECTS AND THEIR DESCRIPTION

• The term "object" is not subject to definition. Objects exist and

can be distinguished. Objects are, for example, cars, books,

people, houses, projects of residential buildings, etc.

• We also consider intangible objects - events, phenomena,

feelings. Each object has properties that characterize it and

distinguish it from the others.

• For example, characteristic for each book is its title, author,

publisher, year of publication, etc.

• Of coarse, no matter how detailed we describe an object, it is

difficult to give its complete and accurate description.

OBJECTS AND THEIR DESCRIPTION
• However, if we abstract from the non-essential properties of

individual objects, a common set of characteristic properties

can be defined for each object that represents it accurately

enough.

• In this way, sets of identical (similar) objects can be

considered, possessing some common properties.

• Each such set will contain objects that differ from each other

in the values of all or some of their characteristic properties.

• Let’s consider, for example, the sets of objects "personal

cars", assuming that the properties that characterize each car

are: license plate number, owner, and year of manufacture.

OBJECTS AND THEIR DESCRIPTION
• A few examples of objects from this set are given in the table:

• It is customary to call sets of objects of the same type object

classes, and the properties that characterize them - attributes.

• Each attribute is a quantity that is defined by a name and a set of

permissible values or, as it is more commonly called, an attribute

field.

OBJECTS AND THEIR DESCRIPTION

• It is permissible for different attributes to have the same field. For

example, "Faculty Number" and "Office Number" can be

attributes of different classes of objects, but with the same field -

the set of positive integers.

• “Student’s name", “Director’s name", “Author’s name" are

examples of other attributes that also have a common field - the

set of alphabetic strings of no more than 40 characters.

• For each object class, one or a group of several attributes can

be defined that straightly identify each object of the class.

OBJECTS AND THEIR DESCRIPTION

• This attribute or group of attributes is called the object class key.

• Each object class has at least one key. This follows from the fact

that object classes contain only objects that are distinct from each

other.

• Examples:

1. Class of objects “EMPLOYEE"

- Class attributes: office number; address; date of birth; education;

subject; department; payroll.

- Class key "EMPLOYEE" is the attribute “office number".

OBJECTS AND THEIR DESCRIPTION

• Examples:

2. Class of objects “PURCHASE"

- Class of objects attributes: invoice number; purchase; number;

date; buyer.

- Since more than one item can be purchased with one invoice, it

follows that the "invoice number" attribute does not uniquely

identify the items in the "PURCHASE" class.

• It can be seen, however, that the first two attributes together

uniquely identify the objects in this class.

OBJECTS AND THEIR DESCRIPTION

• Examples:

OBJECTS AND THEIR DESCRIPTION

• One of the important stages in the design of any DB modeling a

particular subject area is the selection of the object classes, their

respective sets of attributes, as well as the relationships and

relations that exist between the objects of the various classes.

• When creating object models, it is necessary to study the

relationships between the attributes describing each class.

• The values that each individual attribute may have make no sense

on their own. This can be seen if we consider separately the

values С 1584, Вн5048, Сз6382 and Пл4766 of the attribute

“Plate number" and the values 1985, 1988, 1979 and 1989 of the

attribute "Year of manufacture".

OBJECTS AND THEIR DESCRIPTION

• However if we learn that a car with plate number С 1584 is

produced in 1985, and the cars with plate numbers Вн5047,

Сз6382 and Пл4766 are produced in 1988, 1979 and 1989

respectively than the relation (correspondence) between these two

sets of values give them a sense.

• In this case, to indicate that a relationship has been established

between the values of the attributes “Plate number" and "Year of

manufacture", the corresponding elements are placed in the same

order.

• Let A and B be two sets, and R is a bipartite relation between A

and B, i. e. R А х В. If <a,b> ∈ R , then a is also said to be in

relation R with b.

OBJECTS AND THEIR DESCRIPTION
• The figure below shows three examples of relations in which the

pairs of elements belonging to the relation are joined by a line.

OBJECTS AND THEIR DESCRIPTION
• In a given relation R, R A х B , we’re considering the relation

R-1 defined in the following way:

• The relation R-1 is called reverse on relation R.

• A special class of relations are the so-called functional relations

(or just function) if:

• This property expresses the fact that each element a ∈A is in a

relation R with one and only one element of B.

OBJECTS AND THEIR DESCRIPTION

• Consider the examples in the figure above. According to the

definition, the relation R1 is a functional relation:

• The inverse R1-1 of relation R1 is also a functional relation.

• The R2 relation is not functional because:

OBJECTS AND THEIR DESCRIPTION

• Using relations defined over two sets of objects, can be

established relations of the form 1:1, 1:N or M:N.

• A relation is of the form 1:1 if it is established by a relation R,

which, like its inverse relation R-1, is functional.

• If R is not functional, and R-1 is functional, than the relationship

type is 1:N.

• And finally, if R and R-1 are not functional, the relationship type is

M:N.

• A few examples of different types of relation follow:

OBJECTS AND THEIR DESCRIPTION

• Examples:

1. Each club football team has a single senior

coach.

2. Each football player is member of only one football team, but one

team consists of many football players.

OBJECTS AND THEIR DESCRIPTION

• Examples:

3. Except in a club team a football player may play in the national

team as well. Thus each football player is matched

one or two teams, and on each team – many of players.

• When an element of one set can be matched to 0, 1 or more

elements of the other set, then this is graphically represented by a

double arrow. Such are the cases of examples 2 and 3

OBJECTS AND THEIR DESCRIPTION

• The representation of relationships between object classes is

specific to each DM.

• While the relationships between attributes are typically

represented in the considered manner, there is more variety in the

representation of relationships between objects of individual

classes.

• The most popular approaches are those in which relationships

between classes of objects are represented by relations or graphs

(networks).

• They are the basis of the most common models - relational and

graph DMs.

Questions and exercises:

1. What is a data model in a DBMS and what are
the main types of data models ?

2. A data model is a notation (notation system)
for describing data or information. The
description usually consists form ? …

3. Explain the terms object in DBMS.

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 1. Theoretical basis of Databases

❑ Topic 3. Data models

❑ Lesson 2. Database Languages in DBMS: Data
description languages. Data manipulation languages.

Database Languages in DBMS: Data description

languages. Data manipulation languages.

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

Data definition language

• Each DB stores data about one or several object classes, as well

as data representing the existing relationships between them.

• Each object class is represented by a finite number of attributes.

• Most often the data for the object classes is separated into

separate logical files.

• This means that each class of objects is represented by one type

of logical record, and the descriptions of the individual objects of

each class are instances of logical records:

Data definition language

Data definition language

• To ensure a high degree of logical and physical independence of

the data, three levels of data description are considered,

respectively called external schema, conceptual schema and

internal schema.

• The external schema is a description of a part of the DB

contained in a given user program and represents the particular

user's view of the DB structure. It also defines the perimeter of

action of the specific user.

Data definition language

• DB data is stored in external memory most often on magnetic

disks and tapes and this requires that storage structures such as

files, records, fields, indexes, hashing methods, etc. to be

described. This description, oriented towards the physical storage

of the data itself, is the internal schema.

• The internal schema is a description of the physical parameters

of the DB data, which includes a specification of the storage

structures and access methods for the data stored in external

memory. Each DB has a single internal and one or more external

schemes.

Data definition language

• A conceptual schema is a global logical description

corresponding to the classes of objects and their relationships in

the subject area under consideration.

• Each class and each relationship is represented by a

corresponding set of attributes.

• It may be further added that the conceptual scheme is a

description of the subject area under consideration, expressed in

terms of the relevant DM.

• For example, the conceptual schema in a relational model is a set

of descriptions of tables and logical constraints on the data

contained in those tables.

Data definition language

• Having three levels of data description requires a means by which

data structures from one level can be displayed to data structures

in another level.

• These tools are algorithms that are implemented with procedures

and functions and are called data representations.

• In addition to the structural properties of data, data definition

languages (DDLs) also define certain dependencies and

constraints that may exist between attributes.

• For example, for the attribute AE (age of employee) the

following condition can be defined:

Data definition language

• It is customary to refer to such logical conditions on the values of

various attributes defined in the DB schema as integrity

constraints.

• In general, integrity constraints are a set of rules for maintaining

non-contradiction in the data contained in a DB.

• Integrity constraints impose constraints on both the data values

and the relationships that exist between them.

Data definition language

Data manipulation languages

• Very often, the operations defined in an MD are referred to as a

data processing language. The term data manipulation

language (DML) has also been used in some literature.

• DML can be an extension of a particular programming language,

such as PL/1, PASCAL, FORTRAN, ASEMBLER, in which case

it is called a data sublanguage.

• There are also quite a few DMLs that are completely self-

contained and independent of other languages. Such are, for

example, the so-called query languages

Data manipulation languages

Commonly Used DDL Statements

Data manipulation languages

• Typically, the scope of the DML operations is some part of the

DB, and this is achieved by data selection.

• Thus, in this case, the DML operations include a selection of data

and actions permissible over that data

• For example with the operation:

• the names and numbers of the employees from the city of Varna,

whose information is stored in the file PERSONNEL will be

chosen.

Data manipulation languages

• The main actions with the DB data are of two types. With one of

them, the actual processing of the data is performed, such as:

- calculating values of expressions (arguments in them are

numbers from DB)

- finding the maximum, minimum, average or sum of numbers

selected from the DB.

• The other type of action makes changes to the state of the DB.

Such actions are:

- Adding new data in DB;

- Removing date from DB;

- Changing data in DB.

Data manipulation languages

• Any operation containing actions of the second type brings the

DB into a new state, which, like its old state, must correspond to

its schema.

• This means that one of the requirements for the operations of the

DML is that they do not destroy the structural properties of the

data defined by the DML, i. e. that the data stored in the DB

correspond to the requirements given in the schema

• It becomes clear that each DM provides by the means of DML

the possibility to generate a multitude of schemes:

Data manipulation and data definition
languages

Data manipulation and data definition
languages

• From each such schema, a DB is generated which, using DML

operations, can modify its contents within the integrity

constraints described in the schema.

• Thus, with the data model DM1, the Scheme 1 is generated.

• The operations from DML created the database DB11, which

later changed its state and has constantly obtained DB12,. . . ,

DB1m.

Graph data models

• Graph data models were first introduced and used in database

practice.

• These are models where the relationships between classes of

objects are represented by graphs.

• Typical representatives of graph models are network and

hierarchical data models.

• To the graph data models also refers the data model "Entity -

Relationship". In the literature it is known as the ER data model,

which stands for Entity Relationship.

The concept of the data definition language and its name related to the database model,
where the schema of the database was written in a language syntax describing the

records, fields, and sets of the user data model. DDL can be generated from a data model.

NETWORK DATA MODELS

• In general, network models offer the possibility of representing

data and the connections between them by a graph, the vertices of

which are record types and the arcs of which are link types.

• The graphical representation of a graph is also called a data

structure chart. The figure below shows the structure diagram of

the “SUPPLIES” database. It has three types of records and two

types of links.

NETWORK DATA MODELS

Let R1 and R2 be two record types. The L12 link type between R1
and R2 sets the correspondence between the elements (records) of
R1 and R2. This means that for each record r1 of R1, a set of records

from R2 corresponding to r1 can be determined by the L12 link.

HIERARCHICAL DATA MODELS

• Both network and hierarchical data models are graph models. In

hierarchical models, however, stronger constraints are imposed

on the relationships between classes of objects:

1. Links are functional and are not named.

2. The structure diagram of a DB is well ordered tree, i. e. a tree in

which the order of the individual subtrees is relevant.

• Each node in a structure diagram, also called a definition tree, is a

record type.

• The hierarchical database is a collection of samples of the

definition tree.

HIERARCHICAL DATA MODELS

HIERARCHICAL DATA MODELS

• How network structure diagrams are represented by trees?

• The structure diagram in the figure below expresses the fact that

one institute can be served by the computing facilities of several

computing centers, and one computing center can serve several

institutes, i. e., a relationship of the form M:N is established

between the object classes Institute (I) and Computing Center

(CC).

• Since no such relationship is supported in the hierarchical model,

the following approach can be taken:

HIERARCHICAL DATA MODELS

One of the classes is assumed to be the basic and the other is

assumed to be the subordinate. Under the assumptions of the figure

given below, the fundamental class is "Institute" and a question like:

- Which computing centers serve the I-2 institute? can be answered

easily. However, it is more difficult to answer the opposite question:

- Which institutes are served by the CC-2 computing center?

HIERARCHICAL DATA MODELS

HIERARCHICAL DATA MODELS

“Entity – Relationship” Data models

• The Entity-Relationship (ER) data model is, in a sense, a

summary of the above presented network and hierarchical data

models.

• Main characteristics of the model are its expressive power and the

generality with which complex subject areas can be described.

• The main structures in the ER-model are sets of entities (the

entity type) and sets of relations (the relation type).

• The "entity" sets represent the structure of the object classes, and

the “relation" sets represent the structure of the relations between

these object classes.

“Entity – Relationship” Data models

“Entity – Relationship” Data models

“Entity – Relationship” Data models

• Through the ER-model, the structure of a DB is represented by

diagrams called ER-diagrams.

• These diagrams are constructed using three types of geometric

shapes rectangle, rhombus and oval.

• Object classes are represented by rectangles, and their attributes

are represented by separate ovals connected to the corresponding

rectangles.

• The relationships between object classes are represented by

rhombus, which can also have attributes.

Questions and exercises:

1. Explain different languages present in DBMS ?

2. What is difference between DDL and DML in
DBMS

3. Explain different levels of data abstraction in a
DBMS.

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑Module 1. Theoretical basis of Databases

❑ Topic 4. Basic search methods. File types.

❑ Lesson 1. Basic search methods.

BASIC SEARCH METHODS

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

Problem: Search

• We are given a list of records.

• Each record has an associated key.

• Give efficient algorithm for searching for a
record containing a particular key.

• Efficiency is quantified in terms of average
time analysis (number of comparisons) to
retrieve an item.

Search
[0] [1] [2] [3] [4] [700]

Number 506643548
Number 233667136Number 281942902

Number 155778322Number 580625685Number 701466868 …

Number 580625685

Each record in list has an associated key.
In this example, the keys are ID numbers.

Given a particular key, how can we efficiently retrieve
the record from the list?

BASIC SEARCH METHODS

• As stated in the previous lectures, the main task in data

organization is to determine by a given key the location of the

record with that key.

• In this section, some classical solutions to this task are

considered, with particular attention paid to the search speed of

the individual methods.

➢ SEQUENTIAL SEARCH (Linear Search)

We assume that F is a file with n records, n >= 1. If the records of F

are not sorted by the key values, then the most natural thing to do is

to search for a particular record, going through the file sequentially

record by record from one end to the other.

BASIC SEARCH METHODS

• Suggest that the probability of each record being searched is the

same, i. e. P = 1/n for each i=1,2,. . . ,n, the total average number

of checks required to find a record from the file is:

• Obviously, for large values of n, the estimate of E will be too

large and the search for a particular record will be slow.

• Sequential search is therefore only applied if the file is unordered

and/or if it is necessary to review and process all or most of the

file's records.

BASIC SEARCH METHODS

➢ BLOCK SEARCH

• The block search can be performed if the file is ordered by the

key values.

• Again we assume that the file F has n records and its records are

conditionally grouped into separate groups (blocks) of x records

in each block.

• The last block may have less than x number of entries.

• Under these assumptions, the number of all blocks will be [n/x].

• The sign [a] points out the smallest integer not less than a.

BASIC SEARCH METHODS
➢ BLOCK SEARCH

• Instead of reviewing the records sequentially one after the other,

it is obviously better to review only the most recent records in

each block. Then the average amount of reviewed blocks is:

• If such a block search finds a block that possibly contains the

record being searched, then a sequential search can be performed

on that block with no more than x checks, where on average M2

checks will be made:

BASIC SEARCH METHODS
➢ BLOCK SEARCH

• Thus, the total average number of checks E in the block search is:

• This estimate depends on the number x of records in a block. We

could minimize this number by determining that value of x for

which E has a minimum value:

• Hence we determine, , and for the minimum value of E we

get:

Linear search summary

• Step through array of records, one at a time.

• Look for record with matching key.

• Search stops when

– record with matching key is found

– or when search has examined all records without
success.

Pseudocode for Linear search

// Search for a desired item in the n array elements
// starting at a[first].
// Returns pointer to desired record if found.
// Otherwise, return NULL
…
for(i = first; i < n; ++i)

if(a[first+i] is desired item)
return &a[first+i];

// if we drop through loop, then desired item was not found
return NULL;

Linear search analysis

• What are the worst and average case running
times for serial search?

• We must determine the O-notation for the
number of operations required in search.

• Number of operations depends on n, the
number of entries in the list.

Worst case time for linear search

• For an array of n elements, the worst case time
for serial search requires n array accesses: O(n).

• Consider cases where we must loop over all n
records:

– desired record appears in the last position of
the array

– desired record does not appear in the array at
all

Average case for linear search
Assumptions:

1. All keys are equally likely in a search
2. We always search for a key that is in the array

Example:
• We have an array of 10 records.
• If search for the first record, then it requires 1

array access; if the second, then 2 array accesses.
etc.

The average of all these searches is:
(1+2+3+4+5+6+7+8+9+10)/10 = 5.5

Average case time for linear search
Generalize for array size n.

Expression for average-case running time:

(1+2+…+n)/n = n(n+1)/2n = (n+1)/2

Therefore, average case time complexity for serial
search is O(n).

BASIC SEARCH METHODS
➢ BINARY SEARCH

• Binary search, as well as block search, only applies if the file is

ordered.

• Let k be a positive integer for which the inequalities are valid:

• We divide the file into two "equal" parts. The searched record is in

either the first or second half, or none of them.

• This process continues until the record is found or found to be

missing from the file. The estimate of the number of checks is:

BASIC SEARCH METHODS
➢ BINARY SEARCH

– At 0 file splits there are n records.

– At 1 file split, n/2 records remain.

– At 2 file splits, n/(22) records remain.

– …

• At k-1 file splits, n/(2k-1) records remain.

• But 1 <= n/(2k-1) <2. Оттук следва, че:

• Finally we get:

• Without dwelling on the derivation of the average estimate of the

binary search E, we will only point out that:

BASIC SEARCH METHODS

➢ BINARY SEARCH

• Here are some examples of the behavior of average scores in

sequential, block and binary search.

BASIC SEARCH METHODS

➢ BINARY SEARCH

• The cost of faster search in block and binary search is paid for by

the time it takes to maintain the file ordering. These methods are

therefore usually particularly suitable for weakly variable files.

• The discussed block and binary search methods are methods

typical for searching files that fit entirely in RAM. Such files are

very often the indexes in index files.

Binary Search Pseudocode
…
if(size == 0)

found = false;
else {

middle = index of approximate midpoint of array segment;
if(target == a[middle])

target has been found!
else if(target < a[middle])

search for target in area before midpoint;
else

search for target in area after midpoint;
}
…

Binary Search

[0] [1]

Example: sorted array of integer keys. Target=7.

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Binary Search

[0] [1]

Example: sorted array of integer keys. Target=7.

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Find approximate midpoint

Binary Search

[0] [1]

Example: sorted array of integer keys. Target=7.

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Is 7 = midpoint key? NO.

Binary Search

[0] [1]

Example: sorted array of integer keys. Target=7.

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Is 7 < midpoint key? YES.

Binary Search

[0] [1]

Example: sorted array of integer keys. Target=7.

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Search for the target in the area before midpoint.

Binary Search

[0] [1]

Example: sorted array of integer keys. Target=7.

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Find approximate midpoint

Binary Search

[0] [1]

Example: sorted array of integer keys. Target=7.

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Target = key of midpoint? NO.

Binary Search

[0] [1]

Example: sorted array of integer keys. Target=7.

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Target < key of midpoint? NO.

Binary Search

[0] [1]

Example: sorted array of integer keys. Target=7.

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Target > key of midpoint? YES.

Binary Search

[0] [1]

Example: sorted array of integer keys. Target=7.

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Search for the target in the area after midpoint.

Binary Search

[0] [1]

Example: sorted array of integer keys. Target=7.

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Find approximate midpoint.
Is target = midpoint key? YES.

Binary Search Implementation
void search(const int a[], size_t first, size_t size, int target, bool& found, size_t& location)
{

size_t middle;
if(size == 0) found = false;
else {

middle = first + size/2;
if(target == a[middle]){

location = middle;
found = true;

}
else if (target < a[middle])

// target is less than middle, so search subarray before middle
search(a, first, size/2, target, found, location);

else
// target is greater than middle, so search subarray after middle
search(a, middle+1, (size-1)/2, target, found, location);

}
}

BASIC SEARCH METHODS
BASIS FOR COMPARISON LINEAR SEARCH BINARY SEARCH

Time Complexity The formula can be written as O(N) O(log 2 N) is the formula that can
be followed for this search

Sequential Linear search is led by sequence; it
starts from the first point and ends

at the last point.

The binary search begins from the
middle point.

The most compelling case time The first Element serves to the most
appropriate case time

Centre Element is the most relevant
case time in this search.

Prerequisites needed for an array Not needed The array must be formed in sorted
order

The worst-case scenario for n
elements

N number of comparisons will be
needed

The conclusion can be derived only
after log2N comparisons

Capable of being implemented on Linked lists and arrays Incapable of being implemented
directly on linked lists

Insert operation Can be inserted with ease at the
end of lists

Processing is needed to make
insertions at their proper place and
for the sake of maintaining sorted

lists.

Algorithm type Iterative characteristics depicted Characteristics of “divide and
conquer” features are described.

Utility Easy to decipher and apply. There is
no need for ordered elements.

The algorithms are tricky to
understand and apply. The

elements have to be organized in
the proper manner and order.

Lines of Coding Less More

Questions and exercises:

1. Which is basic search methods ?

2. What is linear search?

3. What is binary search?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑Module 1. Theoretical basis of Databases

❑ Topic 4. Basic search methods. File types.

❑ Lesson 2. Types of database files.

TYPES OF DATABASE FILES

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

INDEX FILES

➢ BASIC CONCEPTS

We are looking at a file of records:

which are arranged in ascending order of the key values, i. e.

We’re creating a new file I(F), which record type has two fields:

, where А is the address of the physical block, where records of i

group are stored, i=1,2,..., of the basic file F.

INDEX FILES

➢ BASIC CONCEPTS

Basic type of
index file

INDEX FILES

➢ BASIC CONCEPTS

• The newly retrieved file I(F) is called the index of file F, and the

file F having such an index is the index file.

• In fact, the index is a table that can be used to create a procedure

(method) to access the records in the main file.

• This access method is known as the index access method.

• Since the main file is ordered, it follows that the index will be

ordered as well.

• This means that there are opportunities for an index organization

where searching can be accelerated significantly.

• This fact is essential because the speed of searching in the main

file strongly depends on the speed of searching in its index.

INDEX FILES

➢ INDEX-SEQUENTIAL FILE ORGANIZATION

• If for every m records (m>1) of the main file, one record is

created in the index, this means that the index is a file that in this

case is much smaller in size than the main file.

• As a consequence, it is possible that the index could be fully or

partially present in RAM, and this would indeed greatly reduce

the total search time for records.

• There are cases, however, where the main file has a very large

volume, hence its corresponding index also becomes very large.

INDEX FILES

➢ INDEX-SEQUENTIAL FILE ORGANIZATION

• Since the index is also a file, it follows that it could also be

indexed and a new index could be created.

• This process of indexing the index can continue, resulting in a

multi-level index.

• Searching a record in a file with such organization will be

discussed with a concrete example.

INDEX FILES

➢ INDEX-SEQUENTIAL FILE ORGANIZATION

INDEX FILES

➢ INDEX-SEQUENTIAL FILE ORGANIZATION

• Let's search for a record with key K=576. The top-level index is

checked first.

• In our case, this is the second-level index. For the key K of the

searched record the condition 370 < K < 900 is satisfied.

• Therefore, the search should continue in block № 6 of the first

level index.

• Since K < 609, the desired record will eventually be in block 3,

where records whose keys are in the interval [501,609] are stored.

INDEX FILES

➢ INDEX-SEQUENTIAL FILE ORGANIZATION

• Records in index-sequential files can be read consequently from

the first to the last or in a random order by setting the key of the

searched index.

• Problems with index-sequential organization occurs in two cases:

1. It is necessary to enter a record in a given block which

is simply defined because of the organization of the main file

and this block is already entirely full.

2. It is necessary even the last record of a given block to

be eliminated.

INDEX FILES

➢ INDEX-SEQUENTIAL FILE ORGANIZATION

• The firs problem could be solved in two ways:

a) an additional file is used, called overflow area;

b) one part (for example a half) of records of the overflown

block are moved in a new block and this leads to creating a new file

in the index.

• In repeatedly overflowing of the blocks from the main file, the

efficiency of the index-sequential access method could be

severely degraded, so it’s reorganization becomes imperative.

INDEX FILES
➢ INDEX-SEQUENTIAL FILE ORGANIZATION

• Solving the second problem is simpler and boils down to index

changes only. A variety of the index-sequential organization of files

is the so-called index-arbitrary organization.

• With it, the number of entries in a group is one (i.e. m= 1), which

means that:

(a) each element of the main file corresponds to an index

record; such an index is called a dense index (the index in the index-

consistent organization is non-dense);

b) the master file does not need to be ordered; this would ease

the operations of adding and removing records.

INDEX FILES

• In database the storages structures consist of

files, which are similar to the files used by

operating systems.

• A data file may be used to store a relation, for

example.

• The data file may have one or more index files.

• Each index file associates values of the search

key with pointers to data-file records that have

that value for the attribute(s) of the search key.

INDEX FILES

• Indexes can be “dense,” meaning there is an entry in the

index file for every record of the data file.

• They can be “sparse,” meaning that only some of the

data records are represented in the index, often one

index entry per block of the data file. Indexes can also

be “primary” or “secondary.”

• A primary index determines the location of the records

of the data file, while a secondary index does not. For

example, it is common to create a primary index on the

primary key of a relation and to create secondary

indexes on some of the other attributes.

B-Trees

• While one or two levels of index are often very helpful

in speeding up queries, there is a more general structure

that is commonly used in commercial systems. This

family of data structures is called B-trees, and the

particular variant that is most often used is known as a

B+ tree. In essence:

– B-trees automatically maintain as many levels of index as is

appropriate for the size of the file being indexed.

– B-trees manage the space on the blocks they use so that every

block is between half used and completely full.

B-Trees

• A B-tree organizes its blocks into a tree that is balanced,

meaning that all paths from the root to a leaf have the

same length. Typically, there are three layers in a B-tree:

the root, an intermediate layer, and leaves, but any

number of layers.

B-Trees

HASH-FILES
➢ Basic concepts

• Hashing is a direct access method where the key of each record is

transformed into an address using a specific function.

• The set of elements, each of which is a possible key for a given

file F, is called the key space and is denoted by SK(F).

• The set of addresses that are the starting addresses for the records

of a file F is called the address space of the file and is denoted by

SA(F).

• Any function hF, which establishes a correspondence between the

elements of SK(F) and SA (F), i. e.

is conventionally called a hash function.

HASH-FILES
➢ Basic concepts

• Let character strings of up to 30 characters in length be used as

keys for the records of an F file, and the allowed characters are

uppercase letters of the Latin alphabet.

• Then the number of all elements of the space SK(F) will be 2630

• Each hash function "divides" the space SК(F) into parts К1, К2, ...,

Кn with the following properties:

HASH-FILES
➢ Basic concepts

• In other words, each hash function divides the key space into

parts, each of which contains records - synonyms. The mapping

of two or more record keys to the same SA(F) address is

conventionally referred to as collision.

• Files whose organization is based on hashing are often called

hash files.

• The most serious problem to solve with hash files is collision

resolution.

• Defining a hash function is a difficult and responsible work. It is

difficult to define a universal hash function that for an arbitrary

SK space generates a minimum number of collisions.

HASH-FILES
➢ Basic concepts

• Various hash functions are known to be suitable for certain types

of keys. There are certain requirements to each hash function that

are not always easy to satisfy:

а) to evenly and randomly distribute entries across the

address space;

b) all parts of the key should participate in the hash function

computation, and in case of small differences in the keys, the hash

function produces different addresses from the SA ;

c) the number of collisions that will occur during hashing

should be as minimal as possible, and for n elements belonging to

SA, the probability that two records are synonymous should be 1/п.

HASH-FILES

• A hash file whose size is fixed in advance and does not change

during work is called a static hash file.

• Static hash files were the first hash files used. Their size shall be

determined at their creation.

• The static hash file is made of blocks or so-called zones. Only

logical records that are synonyms are stored in each zone

• When a new record is added, it is saved as the last entry in the list

of synonyms from a zone. Until no zone is full, adding and

searching operations are performed with a single input-output

operation

HASH-FILES

• A dynamic hash file (DH-file for short) consists of two parts - a

main part containing the data records and an additional part called

the index:

HASH-FILES

• Initially, the index contains m elements, through each of which a

block of the DH-file is accessed.

• R records can be stored in one block (of the DH-file).

• With the hash function (let's denote it by H), each of the added

records is allocated to one of the m elements of the index, i. e. the

hash function has the form:

where K is the key space of the DH-file records.

• If R records are entered in one block, i. e. the block is completely

filled, then a sequence of actions is executed, which is

summarized as follows:

HASH-FILES

1. A new empty block is added to the main part.

2. Reorganization of the records from the old block is performed,

with some of them going to the newly added block.

3. The corresponding index element is modified as it grows and

develops as a binary tree.

Many different variants of dynamic hash files have been created

based on the discussed hash file organization.

HASH-FILES

Choice of Hash Function:

• The hash function should “hash” the key so the

resulting integer is a seemingly random function of the

key.

• That's improves the average time to access a record.

• Also, the hash function should be easy to compute,

since we shall compute it many times.

Questions and exercises:

1. What is file types ?

2. What is index files?

3. What is hash files ?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑Module 2. Relational approach in databases

❑ Topic 1. Relational model - basic concepts,
relational schemes.

❑ Lesson 1. Relational approach. Relational model.

RELATIONAL APPROACH.

RELATIONAL MODEL.

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

RELATIONAL MODEL

• The relational model started in 1970 with E. F. Codd's article "A

Relational Model of Data for Large Shared Data Banks.

• The basis of the relational model is the mathematical notion of n-

member relation.

• Each relation is a set of elements that consist of n components

and are called n-tuples.

• In fact, a relation models a class of objects, and each tuples of the

relation represents a specific object of that class.

RELATIONAL MODEL

• The relational model gives us one way of representing the data:

as a two-dimensional table called a relation.

• The following figure gives an example of a relation called

“Movies".

• Each of the rows represents a movie, and each of the columns

represents a property of the movies.

RELATIONAL MODEL
• The correspondence that exists between a class of objects R and its

characterizing set of attributes А1, А2,...,Аn in the relational model is

expressed by the record R(А1, А2,...,Аn).

• The relational model gives the opportunity to see the DB as a set of
simple (normalized) relations, which can be operated with the
simplest mathematical objects - the numbers, using the operations
of the so-called relational algebra.

• The relational model also provides a high degree of data
independence as it makes no need to know the internal
representation of the data and how to access it.

• An essential advantage of the relational model over other DMs is
the uniform representation of object classes and the relationships
between them.

RELATIONAL STRUCTURES

• The relational model is built with three concepts: domain,

attribute and relation.

• Let D1, D2,..., Dn be n, n>=1, sets, not necessarily distinct. Each

of these sets is named, considered as a set of admissible values of

some quantity, and is also called a region or domain

• Regions can be infinite or contain a finite number of elements.

• We consider the Cartesian product of the n sets D1, D2, D3,..., Dn :

RELATIONAL STRUCTURES

• For example, if D1 denotes the signature numbers of the books in

a library, i. e.

• and D2 denotes the numbers of employees in an institute, i. e.

• then D1xD2 will include the pairs of elements shown in the table:

RELATIONAL STRUCTURES

RELATIONAL STRUCTURES

• The meaning of the pair of elements <Signature No. , Employee

No. > could be, for example, "A book with signature number

859CIX has been temporarily taken by employee No. 312 “.

• As a consequence, it can be concluded that not every pair of the

Cartesian product D1xD2 is meaningful

• For example, if the book with signature number 859CIX is in a

single copy and it was taken by the employee with number 312,

the pairs of elements <859C1X,205> and <859C1X,128> are

meaningless.

• Similar discussions can be made for the other pairs of elements.

RELATIONAL STRUCTURES
• This brings us to the idea of considering subsets of the Cartesian

product D1xD2.

• Each subset of the Cartesian product D1xD2x...xDn of n

regions is called a relation

• As an example, consider the relation of books checked

out from the library at a given time

RELATIONAL STRUCTURES

• Of coarse, at another point in time the content of this relation will

be different.

• There are mainly two ways to represent relations.

• One of them is based on the definition of the notion of a relation,

precisely that each of its elements is an ordered tuples d1, d2,

, dn>, where di belongs to the field Di, i=1,2,...,n.

• Hence, it is clear that a relation can be considered as a table of

elements in which the rows are n-tuples and the columns contain

elements only from the same domain.

RELATIONAL STRUCTURES

• Each named column of the tabular representation of a relation is

conventionally called an attribute of the relation.

• Since the information content of the relation does not depend on

the ordering of its attributes, it is natural to look for a second way

of representation.

• In contrast to the tabular representation, the second way assumes

that the columns in the table are named and therefore compliance

with their ordinance is not necessary.

• Thus any relation can also be represented as a set of functions,

each of which is defined in the attribute set and defines some n-

tuple (element) of the relation.

RELATIONAL STRUCTURES
• For example, if R is a relation with attributes A = {Signature No,

Employee No}, it can be defined by three functions f1, f2 and f3 of

the form:

• It is not difficult to conclude that in fact the two representations

are equivalent and this allows us to use either one.

RELATIONAL STRUCTURES
• Relations are such data structures that are variable in content and

represent the current state of a class of objects at any point in

time.

• The essential point in this case is that they retain their structure

throughout their existence.

• The structure of each relation or, as it is also called, the type of

the relation is specified by its relational schema.

• The relational schema of each relation is defined by the name of

the relation and its corresponding attributes.

• For example, if А1,А2 ,Аn, are the attributes of an n-membered

relation named R, its relational schema will be written with the

expression R(А1,А2 ,Аn).

RELATIONAL STRUCTURES

• Since each of the attributes can only receive a value from a

specific area, sometimes the more complete record R(A1:D1,

A2:D2, …, An:Dn) is used when necessary.

• Let R(A1,А2, …, Аn) be a relational scheme and r be a relation

with this relational scheme. This fact is briefly denoted like this:

r:R.

• The set of all relational schemas that describe the object classes

and the relationships between them is the DB schema.

• If R1, R2,..., Rk are the relational schemas that make up the DB

schema, this is briefly written as follows: {R1, R2,..., Rk }.

RELATIONAL STRUCTURES
• Each of these relational schemas has a current value and this is

the content of the corresponding relation.

• Any set of concrete relations r1, r2,…,rк for which r:R at i=1,2,. . .

,k is called the current state of the relational DB (RDB).

RELATIONAL STRUCTURES

• The definition of individual relational schemas is too freely, but

most often the following two rules are followed when creating

them:

1. Each object class is represented by a relation whose schema

includes all its attributes, which become attributes of the relation

as well. Each n-tuple of the relation represents a specific object

(sample) of the class. The key attribute or list of key attributes of

the object class, i. e. , those that uniquely identify the individual

samples in the class, is taken to be the key of the relation.

2. Relationships between two or more object classes are

represented by a relation whose relational schema includes the

key attributes of each of those object classes

REALTION KEY
• Since each relation is a set of non-repeating n-tuples, each relation

has a key.

• It is natural for a relation to have more than one key.

• If an attribute set A is a key for a relation R, then any attribute set X

of R for which A⊂X will also uniquely identify the elements of R.

• Each key is therefore also subject to a minimality requirement,

which can be expressed as follows:

1. For any two elements r1 ∈ R and r2 ∈ R, r1[K] ≠ r2[K]

is valid;

2. There is no subset of K attributes for which property 1 remains

valid.

REALTION KEY
• One of all possible keys of each relation is chosen as the key of

the relation, and it is called the primary key.

• For the rest keys other terms are used: probable, possible or

alternative.

• There are cases when the value of one of the components, i. e. the

attribute, is unknown or undefined when entering a particular

element in a relation. Such a value is usually called zero.

• The foreign key K' for a relation R is such an attribute or list of

attributes that is not a key for R, but there exists a relation Q for

which K' is a primary key.

• Primary and foreign keys are basically a means of establishing

connections between n-tuples of two relations.

REALTION KEY
• In the relational model, two main integrity constraints apply:

1. The values of the attributes that make up the primary key cannot

be zero.

2. For every non-zero value of an attribute that is a foreign key,

there must exist a key attribute from another relation that

contains that value.

• In addition to these two constraints, two other constraints are used

- the values of an attribute must be within a certain range and the

value of an attribute (not necessarily a key attribute) must not be

zero.

• Another broad class of integrity constraints is introduced using

functional dependencies.

REALTION KEY

Non-normalized relation

REALTION KEY

Normalized relation

REALTION KEY
• The relational model implies defining relations and operating on

them, but not with any relations at all.

• The allowed relations for the relational model are the so-called

normalized relations, i. e. , those whose relational schemes include

only atomic (simple, indivisible) attributes.

• In the above two figures two relations were presented.

• One of them R1 is non-normalized, while the other R2, expressing the

same meaning and content, is a normalized relation.

• Considered also as mathematical objects, they are different. The first

one is a binomial relation, and the second is a trinomial relation.

• Relational normalization is directly relevant to the design of

relational DBs and these issues will be discussed in a separate

lecture.

RELATION CHARACTERISTICS
• Each relation (table) in the database has a unique name.

• Each attribute has a unique name within a given relation.

• Each relation contains unique records, it cannot contain duplicate

identical records.

• There is no specific order in which records are placed in a given

relation or attributes in a given record.

• Values in records are atomic - they cannot consist of different data

types (data from different domains) or be the result of a

calculation or concatenation.

The physical organization of data in memory is irrelevant to the

relational model, in which only the logical organization of data is

valid.

TYPES OF REALTIONSHIPS

• To create a relation between 2 tables they must have a common

(equal) field.

а) 1:1 relationship – one to one

б) 1:n relationship – one to many

в) m:n relationship – many to many

• 1:1 relationships - one record from one table corresponds to one

record from the other

– 1 department - 1 manager

– 1 university - 1 rector

– 1 course - 1 course supervisor

TYPES OF REALTIONSHIPS

• 1:n relationships type – one to many – one record from one table

corresponds to many records from the other

– 1 genre – many movies

– 1 department – many employees

– 1 school – many students

• m:n relationships type – many to many - one record from one

table corresponds to many records from the other and vice versa.

TYPES OF REALTIONSHIPS

Cassete Customer

1:m n:1
Taking

Many-to-many relationships are not

supported by the DBMS. They must be

broken into 2 1:n relationships by adding a

new table

Questions and exercises:

1. Relational databases primarily connect
multiple tables together by using which of the
following?
✓ DDL and DML language

✓ Primary Key and Foreign Key

✓ Superkey and unique key

✓ Check and NULL

2. Explain different types of relationships
amongst tables in a RDBMS.

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 2. Relational approach in databases

❑ Topic 1. Relational model - basic concepts,
relational schemes.

❑ Lesson 2. Relational algebra.

RELATIONAL ALGEBRA

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

Introduction

• Relational algebra is a formal language that illustrates the basic

operations for processing relational DB

• It processes corteges (records or rows) arranged in one or more

relations with a single operator without organizing a cycle.

• With reservations, it can be classified as a procedural language as

it indicates the way to build new relationships. It is the basis for

other types of relational languages.

• Relational calculus is a non-procedural formal language

developed by E. Codd where the user specifies what is to be

contained in the result relation.

Introduction
• This language is used to determine the capabilities of other

types of relational languages.

• The operations of relational algebra proposed by CODD are

divided into two groups:

– Multiple operations – they are used because each relation is

in general a set of corteges

• Union;

• Intersection

• Difference

• Cartesian product.

Introduction

• The operations of relational algebra proposed by CODD are

divided into two groups:

– Relational operations - developed specifically for DB:

• Select;

• Project;

• Join;

• Division.

Due to the high complexity of the above mentioned languages,

practical data processing languages have been developed based

on them

Introduction
• Let D1, D2, …, Dn be n, n ≥ 1 domains. We consider the list of

attributes A1, A2, …An, where the attribute Ai takes values from the

domain Di, i=1,2,…,n. We denote this list in short only by А.

• Let B be another list of m attributes B1, B2, …Bm.

• The lists of attributes А and В are comparable if:

1. m=n

2. Ak and Bk are of the same type for each к=1,2,…,n.

• Let p be an n-membered relation with relational scheme R(A), and

q e an m-membered relation with relational scheme R(B), where a

and b are respectively elements of p and q, and: а = <а1, а2,

…,аn> и b= <b1, b2, …,bn>

Introduction
• The concatenation of a with b is a (n+m)-torus and is defined as

follows:

• Under the assumptions made, by a.Ai we denote the i-th

component of the element a of p. Similarly, by a[Ai1,Ai2,…,Aik],

we denote the list of components of a whose values are

respectively of a[Di1, Di2,…, Dik], i. e

Introduction

Introduction
• Except parts of rows (elements) of the relation, parts

(columns) of the whole relation can be quoted. The name

of the relation and the corresponding attributes are used for

this purpose.

Relational operators - UNION

• Let p and q be two n-membered relations with the same

relational scheme R(A1,A2,. . . ,An).

• The union of the relations p and q is a third relation r with the

same relational scheme containing the elements of p and q, i. e.

• A union is a two-argument operation, often denoted by the

commonly used mathematical sign for union of sets "U", but

sometimes also represented as a two-argument function with the

following definition:

Relational operators - UNION

Relational operators - DIFFERENCE
• Again, p and q are assumed to be two relations with the same

relational scheme R(A1, A2,…,Аn).

• The difference of the relations p and q is a third relation r with

the same relational scheme containing the elements of p not

belonging to q, i. e.

• The difference of two relations is denoted by the sign "-"

commonly used in mathematics, and is also represented as a

two-argument function with the following definition:

Relational operators - DIFFERENCE

Relational operators - CARTESIAN PRODUCT

• Let two relations p and q be given, where p has relational

schema P(A1, A2,…, Am), and q has relational schema

Q(B1,B2,…,Bn).

• The Cartesian product of p and q is a third (m+n) member

relation r, with relational scheme R(A1, A2,…, Am, B1,B2,…,Bn),

containing all possible concatenations of elements of p and q i.

e.

• The Cartesian product of two relations is denoted by the sign

"x" commonly used in mathematics, but is also represented as a

two-argument function with the following definition:

Relational operators - CARTESIAN PRODUCT

Relational operators - Projection

• Let p be an n-membered relation with relational scheme P(A1,

A2,…, An).

• The projection of the relation p with respect to the attributes Ai1,

Ai2,…, Aik ,i<=k<=n is a k-membered relation r with relational

schema R(Ai1, Ai2,…, Aik), which is obtained from p by

removing all attributes that are not configured in the schema R

and in which the repeated elements (rows) are represented only

once, i. e

Relational operators - Projection

• In accordance with accepted notations, the projection r of the

relation p can also be written as follows:

• Its expression by a function has the following definition:

Relational operators - Projection

GRAPHIC INDICATIONS

Relational operators - RESTRICTION
Let p be an n-membered relation with relational scheme R(A1,

A2,…, An),. P relation restriction regarding a given condition F

is another relation r with the same relational scheme, each

element of which fulfill the condition F, i.e.

It’s obvious that The restriction is denoted

by

And as a function has the following definition:

Relational operators - SECTION

The section of two relations p and q with mutual relational scheme is

third relation r with the same relational scheme where:

It is denoted with the generally accepted in mathematics sign “∩”.

The section is also written as a function with the following definition:

By the definitions of section and difference it follows:

Relational operators - QUOTIENT

Let two relations p and q be given, q - non-empty relation with

relational schemes P(A1,A2,…AK,B1,B2,…,BM). The quotient of p

and q is third relation r with a relational scheme R(A1,A2,…,AK)

and for each lϵr and each sϵq; the concatenation ts is a p element.

The quotient of two relations p and q is written p : q and may be

expressed by three of the main operations of relational algebra in the

following way:

Where A shows the list of attributes A1,A2,…,AK.

Relational operators - QUOTIENT

Conclusion
• Users search information in the relational database by making

queries written in one of the formal notations for expressing

operations on relations. These notations are two types:

1. An algebraic notation called relational algebra, where queries

are expressed by applying special operations to relations.

2 A logical notation called relational calculus, where queries are

expressed by writing logical formulas that must satisfy the tuples

in the result. The two notations (subject to some restrictions) have

equivalent expressive power, i. e. each can express any arbitrary

query that the other can.

• Relational algebra is a notation for describing queries to

relations.

• The operations of relational algebra are formally performed on

relations, which are expressed as sets of tuples.

Questions and exercises:

1. What is Relational Algebra?

2. How can you distinguish between Relational
Algebra and Relational Calculus?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑Module 2. Relational approach in databases

❑ Topic 2. Relational languages.

❑ Lesson 1. Relational languages. Types of Relational
Languages.

RELATIONAL LANGUAGES.

TYPES OF RELATIONAL LANGUAGES.

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

Introduction
• Relational languages are languages for describing and processing

data in relational DBMSs.

• They are also called data languages, and because they often are

incomplete and embedded within other languages, they are also

called data sublanguages.

• Relational languages are divided into two main categories -

languages of relational algebra and languages of relational

calculus.

• Languages of relational algebra are procedural languages which,

by means of the relational operations discussed in the previous

chapter, allow a step-by-step description of the computational

process leading to the relational answer.

Introduction

• Relational calculus languages, also called predicate languages,

allow to write the general form of the relation-response without

specifying the individual operations and their sequence.

• Relational calculus languages can be divided into two groups

depending on the type of variables allowed in their language

constructs.

• In the first type of languages, variables are used whose allowed

values are elements of a relation, i. e. n-tuples.

• That’s why they are called languages of relational calculus with

variable n-tuples.

Introduction
• One of the most common languages of this type is the Alpha

language.

• The other type of languages use variables whose allowable values

are elements of separate domains, i. e. simple variables, and are

therefore called languages of relational calculus with simple

variables.

• Representative of this type languages is the QBE language.

• Except the two main categories of languages, there are also the

so-called intermediate relational languages that have the

capabilities of the relational algebra and relational calculus

languages. The language of this type that is mostly used is the

SQL language.

Introduction

ALPHA LANGUAGE

• The Alpha language is based on predicate calculus and its author

is E. Codd.

• Language constructions are few, but powerful and expressive.

• The author of the language assumes that Alpha is embedded as a

data sublanguage in some programming language, such as PL/1,

COBOL or FORTRAN, whose tools are used to describe the

objects that make up the DB.

• Using the language tools, the user extracts data from the DB and

it is automatically placed in the workspace.

• When data is entered into the DB, it must first be located in some

work area.

ALPHA LANGUAGE

• In other words, the workspace is an intermediate link between the

user and the DB.

• The user can use several workspaces at the same time, quoting

them with their names.

• Each workspace automatically obtains the type (schema) of the

relation that is obtained as a result of executing some relational

operator.

• The operator for searching and retrieving data from the DB has

the form:

ALPHA LANGUAGE

ALPHA LANGUAGE

• The database is updated when:

- creating new relations or adding elements to existing

relations;

- removing relations from the DB or elements from given

relations;

- changing the values of some attributes in certain relations.

These operations are illustrated by an example.

ALPHA LANGUAGE

ALPHA LANGUAGE
• The Alpha language offers several built-in features. They are used together

with the get operator and specifically they can participate in both the

whole list and the selection criterion. Among the more important functions

are:

a) count (attribute name) - finds the number of different values in the

specified attribute;

b) total (attribute name) - finds the sum of the elements in the specified

attribute;

c) top (n, attribute name) – this is a Boolean function. Its value is "true" only

if the value of its "attribute name" parameter is equal to the n-th largest value

of that attribute. If the attribute has as values the numbers {5,3,8,4,6,7,10},

then the third largest value in order is the number 7 and the third smallest

value in order is the number 5.

d) bottom (n, attribute name) – the function is the same as the function top,

but refers to the n-th smallest value.

QBE LANGUAGE

• The full name of the QBE language is Query By Example.

• The most characteristic feature of this language is its two-

dimensional syntax, that’s why it is used only by terminal.

• Using a special screen editor, the user creates and then uses blank

tables (relations), which actually define relational schemas.

• Some authors call such an empty table a "skeleton table", a

"structure of table" or a "shape of table".

QBE LANGUAGE

• Each form contains the name of the table and the names of its

columns (attributes).

QBE LANGUAGE

• QBE is a relational database management language and enables the

definition of relational (form), update and search data in the database.

• What is important in this case is that all these types of operations are

performed by a unified method, using forms.

The main principles and ideas in QBE language can be summarized as [4,

6, 16, 106]:

1. The user should be facilitated as much as possible when using the

language.

2. The language syntax should be simple but with great expressive power.

3. Communication with DB is made by “filling” the forms with the

appropriate “sample” row that defines the type of all desired rows.

QBE LANGUAGE

• The search and retrieval of data from the DB is done by

specifying a sample answer in the appropriate form. The example

includes names of variables and constants that are placed in the

appropriate columns of the form.

• For example, if you were to print out the numbers of all the

projects in computer science, this could be done as follows. Enter

the name of the PROJ table and the form appears on the screen:

QBE LANGUAGE

• Now the query itself should be prepared. It contains two key

elements:

- the constant 'informatics’;

- printing of the project number.

• These two elements are written in columns D and Р#.

QBE LANGUAGE

• This record means the following:

• Print the project numbers, such as p1, which are in the field of

informatics.

• The sample element p1 is underlined and the text constant

'informatics' is not underlined.

• The printing of the project numbers is done by the P. (Print)

command preceding the sample element p1.

• The example element "p1" is chosen quite arbitrarily and it is

possible that no such element exists at all.

• Here is an example:

QBE LANGUAGE

QBE LANGUAGE

QBE LANGUAGE

QBE LANGUAGE

QBE LANGUAGE

The data dictionary is set of descriptions, consisting of some system

tables. Three of them are described here:

TABLE – a table containing information about the DB tables;

COLUMNS – a table containing information about DB attributes;

AUTHORITY – a table, containing information about users and

their rights of access to different relations. The type of access is

described in details: for extracting, updating, adding or deleting data

from DB.

QBE LANGUAGE

QBE LANGUAGE

QBE LANGUAGE

QBE LANGUAGE

QBE LANGUAGE
• Products such as Microsoft Access and Microsoft SQL Server

Enterprise Manager employ the aspects of QBE.

• After relational databases became popular, there was a need for a

standard language for data operations. The answer was SQL

(Structured Query Language).

• Gradually, SQL grew into a multipurpose database language with

control statements for: creating, modifying and deleting data; data

definition (tables, columns); protecting access to database items by

working with groups and individual users; data management

operations such as backup, block copy and update; and, most

importantly, transaction processing.

The SQL language will be discussed in details in the next topic.

Questions and exercises:

1. What are relational languages ?

2. What language does the Relational Model use?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑Module 2. Relational approach in databases

❑ Topic 2. Relational languages.

❑ Lesson 2. SQL Relational language. Data selection.
Built-in functions. Data updating.

SQL RELATIONAL LANGUAGE. DATA SELECTION.

BUILT-IN FUNCTIONS. DATA UPDATING

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

Introduction

• SQL Language (Structured Query Language), as well as QBE,

provides a unified approach for defining and processing data

organized in relational databases.

• It was developed in 1974 by IBM associates, one of whom was

D. Chamberlin.

• In its initial form, known as SEQUEL, then SEQUEL2, the SQL

language was used in various relational systems, such as System

R, SQL/DS, DB2, and Oracle.

• SQL operators can be performed in direct mode or embedded in

high-level language programs such as PL/1, COBOL,

FORTRAN, PASCAL, C, etc.

Introduction

• The SQL language is a non-procedural language due to the fact

that its operators specify what is to be obtained, without

specifying the way to obtain the desired result.

• The keywords of the language are reserved and cannot be used to

denote other objects (tables, columns, etc.).

• For clarity and brevity, the syntax of the more complex SQL

operators is represented graphically with syntax diagrams.

• The basic creative elements of a syntactic diagram are, as usual,

the oval, the circle, the rectangle and the arrow:

Introduction

• An oval is used to indicate the SQL reserved words. The circle

has the same purpose as the oval, but it usually contains words

with fewer characters.

• The rectangle is used to indicate nonterminal characters possibly

defined in another syntactic diagram.

Introduction
• The arrow indicates the direction of "movement" (reading) of the

syntactic diagram.

Each syntactic diagram

has one output and one

input to which the

concept being defined

is written. "Movement"

along the syntactic

diagram is according to

the direction of the

arrows.

DATA SELECTION
• The selection of data from the DB is done with the select

operator. It is most often used in its incomplete form:

DATA SELECTION

• The key words in it are:

– Select;

– From;

– Where.

• Identifiers (a character string of letters and numbers beginning

with a letter) are used for column and table names.

• As in the other languages, column names are prepended with the

name of the corresponding table where necessary.

DATA SELECTION

DATA SELECTION

Example Get the signature numbers and topics of the books

Solution: select B#, T
from BOOK;

Example Get the signature numbers and topics of the books,
published by “Tehnika” Publishing house after 1989

Solution: select B#,T
from BOOK
where (E=‘Tehnika’) and (Y>1989)

DATA SELECTION

• The selection criterion is a predicate, which in the simpler case

may include the operations for relations:

=, <>, >, <, >=, <=

boolean operations:

and, or, not

and small brackets.

• The condition that expresses the selection criterion is a predicate

for comparing values of expressions:

DATA SELECTION

DATA SELECTION
• As expressions can be used column names, constants (numeric

and text), inquiries to built-in functions (count, avr, max, min,

sum), and as arithmetic operations - the four basic arithmetic

operations (+, -, *, /).

Example Obtain complete information about the books

published in “Tehnika” Publishing house from

1980 to 1990.

Solution: select *

from BOOK

where (E=‘Tehnika) and (Y>1980)

and (Y<=1990)

DATA SELECTION

Example Obtain a name list of all employees and authors of
books, published by “Tehnika”.

Solution: In the solution of this example union of values of
two

comparable attributes BOOK.A and
EMPLOYEE.N is required.

This is performed by the union operator.

select A
from BOOK
where E=‘Tehnika’

union
select N
from EMPLOYEE

DATA SELECTION

Example Obtain a list of employees that haven’t published
in “Tehnika” until 1985.

Solution: The answer requires all the employees who have
published in “Tehnika” until 1985 to be removed
from the multitude i.e. to perform the minus
operation.

select N
from EMPLOYEE

minus
select A
from BOOK
where (E=‘Tehnika’) and (Y<= 1985)

DATA SELECTION
• The following examples highlight some of the possibilities where the

selection criterion is substantially more complex and different from

those considered so far.

Example Obtain the names of employees who have taken

books from the library.

Solution: To receive an answer to this question tables

EMPLOYEE and B_E are needed. Suppose that

the numbers of employees who used books from

the library are (s1, s2, s15). Than the query

answer would be as follows:

select EMPLOYEE.N

from EMPLOYEE

where EMPLOYEES.S# in (s1, s2, s15)

DATA SELECTION
• The membership predicate in checks the membership of the

employee number S# to the given set.

• The general form of the predicate in is given by the syntactic

diagram:

DATA SELECTION

• Since the numbers of employees who used books are generally

not known, recording the list of employee numbers (sl,s2,s15) is

actually impossible.

• Therefore, this list must be obtained with another query that is a

subquery of the above one:

select EMPLOYEE.N

from EMPLOYEE

where EMPLOYEE.S# in

(select B_E.S#

from B_E);

DATA SELECTION

Example Obtain the names of employees who are not managers

of project p1.

Solution: select EMPLOYEE

from EMPLOYEE

where p1 not in

(select PROJ.P#

from PROJ

where EMPLOYEES#=PROJ.S#)

Built-in functions

• Like other relational languages, SQL uses several built-in

functions.

• These functions can be addressed in the list of items following

the word select, as well as in the select criterion.

• Following are some examples illustrating basic use cases of the

built-in functions:

– Count;

– Sum;

– Мin.

Built-in functions

Example Obtain the number of all projects.

Solution: select count (P#)

from PROJ;

Example Obtain the number of the project managers.

Solution: Since one employee can be manager of more than

one projects only the different numbers of
employee

in table PROJ should be count.

select count (distinct PROJ.P#)

from PROJ

Built-in functions

Example Obtain the total amount of the projects from different

subjects (informatics, mathematics, etc.).

Solution: This is a more general task than this in example 18.

In this case the projects should be grouped by research

subjects and should be count the total sum for each

group of projects. This grouping is indicated by the

phrase group by

select PROJ.P#, sum(PROJ.C)

from PROJ

group by PROJ.D

DATA UPDATING
• The update (change values), insert (add rows) and delete

(remove rows and tables) operators are used to update the

database.

• Through concrete examples, the main functions and capabilities

of each are outlined.

• In the set part of the update operator, changes can be made to the

values of several columns. Assignment operators separated from

each other by commas are used for this purpose.

DATA UPDATING

• The selection criterion can of course be much more complex and

thus update the values of a selected subset of table elements

DATA UPDATING

DATA UPDATING

DATA UPDATING
• When adding a new row to the table, it is mandatory to specify the

values of the key attributes. This is not mandatory for the other

attributes, for example:

insert

into PROJ(P#,D,S#)

values (’р7’,’информатика’,126)

Example All numbers of employees from the PROJ table who

are managers of informatics projects to be added to

table EMPLOYEE

Solution: insert

into EMPLOYEE (S#)

select PROJ.S#

from PROJ

where D=‘informatics’

DATA UPDATING

• When this operator is performed, the input is done automatically

from table PROJ and this is set with the select operator.

• The two examples of adding data represent the two varieties of

the insert operator.

DATA UPDATING

Example Delete all rows related to books returned in 1970

from table B_E

Solution: delete

from B_E

where B_.D2 like %1970;

Example Delete all rows from table B_E

Solution: delete

from B_E

DATA UPDATING

• The general appearance of the delete operator is indicated in the

figure below:

Questions and exercises:

1. What is SQL ?

2. What are Constraints in SQL?

3. What is the correct SQL command to create a
database named "library"?
✓ create database library

✓ create new database library

✓ create database library(readers, files, books)

✓ create new database library (readers, files, books)

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑Module 2. Relational approach in databases

❑ Topic 3. Relational systems.

❑ Lesson 1. Basic characteristics and classification of
relational systems

BASIC CHARACTERISTICS AND CLASSIFICATION
OF RELATIONAL SYSTEMS.

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

Introduction

• Modern DBMSs emerged as a necessary programming tool to

increase the productivity of programmers in designing and

developing information processing systems, and to increase the

role of the end user in creating, modifying, accompanying, and

operating specific programming systems.

• In the opinion of many specialists, the requirements of any DBMS

are most satisfied by DBMSs using the relational data model.

Basic characteristics of relational
systems.

• These systems are called relational database management

systems, or RDBMS for short.

• The main advantages of RDBMS built on the relational data model

are:

- Simplicity. It is expressed in the homogeneity of the logical

representation of the data and the relationships between them.

- Data independence. Relational schemas and relational

languages are independent of data representation methods and data

access methods.

- Ability to optimize queries.

Basic characteristics of relational
systems.

- High-level interface. Through non-procedural relational

languages, the end user has the ability to describe their queries to the

DB.

- Ability for effective physical presenting and searching

- Work with virtual objects. Based on defined relations, the

user has the ability to define virtual, physically non-existent relations.

- Distributed processing capability.

- Strong theoretical basis. It is based on the mathematical

concept of n-membered relationality, set theory and first-order

predicate calculus.

Relational systems classification
• When classifying relational systems, the lowest level is the so-

called minimal relational systems.

• These are systems that support only relational structures, do not

support integrity constraints, and their corresponding DML (Data

manipulation language) is not relationally complete.

• At the next level are relationally complete systems, which, except

for relational structures, support relationally complete DML but

without null value processing.

• Highest in the hierarchy are fully relational systems. They support

relational structures, their corresponding DML is relationally

complete, and they support integrity constraints

Relational systems classification

• Fully relational systems are described in detail by E. Codd. The

requirements defining when a system is fully relational are briefly

listed below:

1. Each piece of information in the RDBMS shall be presented

in a tabular format. (In addition to the data in the DB and the

relationships between them, tabular descriptions of the data, integrity

constraints, etc.)

2. Each data element in the DB is accessible by a table name, a

primary key value, and a column name.

3. Ability to process null (non-key) values.

Relational systems classification

4. The system catalog is a set of tables that are processed with

the relational language available in the system.

5. Relational language should include:

- data description language, including the definition of virtual

tables;

- data processing language;

- language for defining integrity constraints.

6. Ability to update virtual tables.

7. Ability to update entire tables.

Relational systems classification

8. Physical data independence.

9. Logical independence.

10. "Independence" of integrity:

- integrity constraints are defined by means of the relational

language, not within the user program;

- the set of integrity constraints must include at least the two

main structural integrity constraints.

11. Ability for centralized and distributed processing.

Relational systems classification

12. If a low-level language is also present in the system, it

must not allow ways to violate the integrity constraints introduced by

the high-level relational language.

As you can see, the requirements for relational systems are extremely

serious. This fully explains the fact that on the software market it is

rare to find systems that satisfy all twelve requirements, but that is

why developers strive to make their systems as close as possible to

fully relational systems.

An overview of some basic relational
systems

• Several relational systems are selected here, which reflect the

relational approach in different ways with their variety of linguistic

tools.

INGRES SYSTEM

• INGRES (INteractive Graphics and REtrieval System) is a

relational system developed by the University of California,

Berkeley.

• The main achievements in INGRES are the high data independence

and the availability of a non-procedural language for description,

search, update data and maintain integrity constraints. In this sense,

it comes too close to fully relational systems.

An overview of some basic relational
systems

• Four interfaces are supported in INGRES:

- QUEL - a relationally complete query language based on

relational calculus with n-tuples variables;

- EQUEL - an interface through which QUEL operators can be

included in programs of C language;

- CUPID - a non-procedural interface through pictures with

search and update capabilities;

- GEO-QUEL - an interface which is used to display relevant

data from the database in the form of geographical maps.

An overview of some basic relational
systems

• The selective possibilities of the QUEL language are expressed by

an operator similar to the get operator of the Alpha language, but

without quantifiers:

• Here tl and t2 are names of variable n-tuples whose modification

domains are respectively R1 and R2, A and B are attribute names in

R1 and R2, and C is a condition on which the selection of data

from the DB is performed.

QUEL allows the definition of virtual tables and indexes, as well as access by

hashing

An Overview of some basic relational
systems

ORACLE SYSTEM

• ORACLE is a fully relational system and was developed by the

company Relational Software Inc. Its initial version is from 1978.

The language used in the system is SQL and it can be worked with

either directly or through programs in PASCAL, C, PL/1, COBOL,

FORTRAN, which include SQL calls.

• ORACLE is used for microcomputers and for large computers

running various operating systems.

• A report generator is created to the system with options for:

An Overview of some basic relational
systems

- development of interactive applications;

- outputting reports;

- editing texts

• ORACLE has advanced possibilities for defining and processing

virtual tables, as well as ensuring data integrity in the DB.

PASCAL/R SYSTEM

• PASCAL/R is a relational system that is a relational extension of

the PASCAL algorithmic language. It was developed at the

University of Hamburg and the initial version dates back to 1978.

PASCAL/R system supports three interfaces:

An Overview of some basic relational
systems

- through PASCAL/R programs;

- interactive interface;

- privileged interface for the DB administrator.

• DB description is done in the types definition section of a

PASCAL/R program.

• Data selection is done using relational expressions of the form:

where t is an n-tuple name, R is a relation name, and p(i) is a

predicate.

An Overview of some basic relational
systems

• Boolean relational expressions can be used in loop operators and in

the conditional operator. The system does not support virtual tables.

An Overview of some basic relational
systems

QUERY-BY-EXAMPLE SYSTEM

• QUERY-BY-EXAMPLE (QBE) is a relational system developed in

1978 in the laboratory of IBM, USA. The extended version of this

system is called OPE (Office Procedures By Example).

• The language used in the system is QBE. In addition to directly, the

user can interact with the system via programs compiled in PL/1 or

APL, in which QBE addressing is allowed. The system also allows

the following possibilities:

- definition of integrity constraints;

An Overview of some basic relational
systems

- generation of a new DB and reorganization of an existing

DB;

- generator of outputs;

- creating indexes, inverting columns.

• The system supports four types of system tables in the catalog

named TABLE, DOMAIN, PROGRAM, and AUTHORITY. The

last two tables contain program or DB query names and access

rights for individual users.

An Overview of some basic relational
systems

SYSTEM R SYSTEM

• SYSTEM R is a completely relational system developed in 1975 by

IBM Laboratory, USA. The language used in the system is SQL.

• The user works with the system in dialog mode, using SQL

commands or through PL/1 or COBOL programs where he inserts

SQL commands.

An Overview of some basic relational
systems

MySQL SYSTEM

• MySQL is an open source relational database management system

(RDBMS) that uses SQL, the most popular language for entering,

accessing, and performing other data processes in a database.

• Because it's an open source, anyone can download MySQL and add

to it, depending on the general public rules.

• MySQL is mainly known for its speed, security and flexibility.

However, it is well-known that it works best when it manages

content and does not perform transactions.

An Overview of some basic relational
systems

Microsoft Access SYSTEM

Microsoft Access is a completely functional relational database

management system. It provides all the possibilities for data

processing and control:

1. Data definition and storage. Microsoft Access has flexible

options for defining different types of data (text, numbers, dates,

currency, pictures, sounds, documents, spreadsheets, Internet

connections).

The user can define the way the data is stored and displayed on the

screen or printer. Of particular importance is the ability to define

simple and sophisticated data validity rules which ensure entering the

correct into the database.

An Overview of some basic relational
systems

2. Data processing. Microsoft Access uses the powerful SQL

relational data model language. To obtain the required result

information, it has a powerful means of defining queries that are

created without the need for the user to have knowledge of SQL.

Queries can be created incorporating data from many tables.

3. Data control. Microsoft Access can be used on a single

workstation or in client/server mode on a network. For complete and

efficient data sharing with other users, Access has excellent security

and data integration capabilities. You can define which users or groups

of users have access to the objects and the level of access - to read the

data or to be able to edit and update it.

An Overview of some basic relational
systems

Microsoft SQL Server SYSTEM

• Microsoft SQL Server is an overall relational database management

and data analytics system that is used to create a variety of e-

commerce solutions, business applications, and big data storage.

• Like any Microsoft product, there are many different versions of

Microsoft SQL Server. They are designed for a variety of audiences

and workloads, ranging from small single-machine applications to

huge Internet-based applications that many users are working on

simultaneously.

• Microsoft SQL Server is designed to manage large server-based DBs

as opposed to MS Access which is desktop-based and is not designed

to manage large corporate DBs.

Questions and exercises:

1. What is RDBMS? How is it different from
DBMS?

2. What are the basic characteristics of RDBMS?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑Module 2. Relational approach in databases

❑ Topic 3. Relational systems.

❑ Lesson 2. Relational schema analysis. Functional
dependencies

RELATIONAL SCHEMA ANALYSIS.

FUNCTIONAL DEPENDENCIES.

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

Introduction

• A major problem in building models of a subject area is the

definition of the entities (relations, tables) that are chosen for

classes of objects in the subject area and the properties (attributes,

branches) that characterize them.

• The complexity of the problem is a consequence of the ambiguity

of its solution.

• In such case the following questions may arise: when a relational

schema representing an object class is good; when two schemes

are equivalent or which of two schemes is the better one.

• Each of these questions actually leads to the need of a formal tool

for analyzing relational schemas.

Introduction

• Before presenting methods for the analysis and evaluation of

relational schemes, an example is presented to illustrate various

deficiencies of one particular relational scheme.

• In literature, these deficiencies are known as redundancy,

updating, addition, and deleting anomalies.

• A relation scheme is presented:

where each library is presented by it’s number (Lib#) and address

(Address) and each book is presented by it’s name (Book) and it’s

number of copies (Number) that are available in the library.

Introduction

• It is natural to assume that:

- each library is uniquely defined by its number;

- one book can be stored in several libraries.

• As a consequence, the following conclusions can be made:

1. For each book from the same library there will be a repeat of the

library address.

2. It follows from point (1) that when the library address changes,

it will be necessary to update as many rows of the relation as

there are books stored in it.

Introduction
This operation does not exclude the possibility that some of the rows

may remain non-updated, where inconsistencies in the DB data will

occur.

3. The address of a newly created library cannot be entered into

the DB until at least one book that will be stored in that library

is specified. The reason for this is that the key attributes in this

relational schema are the Lib# and Book attributes, and

therefore they must have well-defined values for each element

of the relation

4. If, due to renovations to a library, the books that were stored in

that library are moved to another book repository or library, all

the rows in the relation pertaining to that library have to be

removed from the relation.

Introduction

As a consequence, the address of the library will also be

"lost", even though the library exists and its address remains the

same.

The above deficiencies, called redundancy anomaly (1), update

anomaly (2), add anomaly (3) and remove anomaly (4), show

that the relational scheme LIBRARY is not "good".

The methods that lead to its "improvement" require first to

present methods for analyzing the dependencies that exist

explicitly or implicitly between the attributes of a relational

schema.

Introduction

• The methods that lead to its "improvement" require first to

present methods for analyzing the dependencies that exist

explicitly or implicitly between the attributes of a relational

schema.

Most often, two types of dependencies are considered - functional

and multivalued.

Functional Dependency is a constraint that determines the relation of

one attribute to another attribute in a Relation Database

Management System.

FUNCTIONAL DEPENDENCIES
• Let А1, А2,...,Аn be a list of n attributes, n>=1, which we will

denote by А1 А2...Аn (without commas between the attribute

names) or with only one name А, А=А1, ..., Аn.

• It is assumed that the list A is unordered and that there are no

repeated elements, i. e. A is a set of attribute names. By P(A) we

denote the set of all subsets of A.

• It is known that if A has n elements, i. e . |A| = n, then the number

of subsets of A is 2n, i. e. |P(A)|= 2n.

• Let R(A) be a relational scheme and X,Y ∈ P(A).

FUNCTIONAL DEPENDENCIES

• An attribute X is said to functionally determine an attribute Y if

for any relation r with relational schema R(A) given any two rows

i1, i2 ∈ r for which i1.X = i2.X, it follows that i1.Y =i2.Y, when

rows are equal in the X attribute, they are equal in the Y attribute.

• It should be noted that X and Y can be both simple attributes and

composite attributes, i. e. they can consist of several simple

attributes.

• When X functionally determines Y, it is also said that Y is

functionally dependent on X or that there is a functional

dependence of X in Y, using the notation R. X - - - > R. Y.

FUNCTIONAL DEPENDENCIES
• If there is no ambiguity, specifying the relational schema is

optional.

• It can be noticed that in fact the functional dependence between

two attributes can also be considered as a completeness constraint

on the relational schema R(A) of the form X - - - > Y, where X, Y

∈ P(A).

• This restriction guarantees that for any relation r, r:R(A), any

value of the attribute X uniquely determines the value of the

attribute Y.

• For the formal expression of a functional dependence, operations

from relational algebra can also be used.

FUNCTIONAL DEPENDENCIES

• Often the set of functional dependencies is denoted by F:

i. e. F is a binary relation.

• It is also customary to say that if X - - -> Y belongs to F, then X -

- -> Y is an F-dependence.

• If X - - - >Y is an F-dependence that is satisfied by the relation r,

in short we will write this with r(X - - - >Y) = true, and in case X

- - - >Y is not an F-dependence for r, we will write r(X - - - >Y) =

false.

FUNCTIONAL DEPENDENCIES

• Since the set of F-dependencies is a binary relation, a convenient

and visual way of representing it is by a graph G = (A, F), where

A = А = {A1, A2, … ,An} is a set of attributes, and F is a set of F-

dependencies of the form X - - - > A, X ∈ P(A) .

• On each attribute Аi ∈ А we match a vertex of the graph.

• When X is a simple attribute, then we map an arc to the F-

dependence X - - - >Ai.

• However, there are cases where X is a composite attribute. In

such case, vertices of the second kind corresponding to the

constituent attributes are entered.

FUNCTIONAL DEPENDENCIES
• If X = Ai1, Ai2, …, Aik, then the arcs (Aij, X), j = 1,2, …, k are built

first and than the arc (X, Ai).

F-dependencies of the relational scheme EXCURSION

AXIOMATICS OF FUNCTIONAL
DEPENDENCIES

• We consider the 3-member relation r:

• From the first and second rows of the tabular representation of r it

could be thought that A --- > C.

• However, this conclusion would not be true without knowing all

the states of the relation r, since F-dependence is a property of the

relational scheme, not of a particular relation.

AXIOMATICS OF FUNCTIONAL
DEPENDENCIES

• In fact, each F-dependency complements the semantics of the

modeled class of objects since it is invariant with respect to the

current information content of the DB.

• The dependencies that it is possible to define within a relational

scheme, even though finite in number, can sometimes be too

many.

• It is therefore natural to ask, how on a given set of functional

dependencies F can all functional dependencies be obtained?

AXIOMATICS OF FUNCTIONAL
DEPENDENCIES

• An F-dependence X --- > Y is called a logical consequence of the

set of functional dependences F if for any relation r satisfying the

F-dependences F, i. e. r(F)=true, it follows that r(X - - - >

Y)=true.

• In short, we will denote this by F:= X --- >Y.

• Armstrong shows that by using the so-called inference rules or

axioms for a given set of F-dependencies, new F-dependencies

are obtained, and all F-dependencies can be obtained.

AXIOMATICS OF FUNCTIONAL
DEPENDENCIES

• In the formulation of the inference axioms given below it is

assumed that: R(A) is a relational scheme; F is the set of F-

dependencies in A; X, Y, Z and W are lists of attributes of A; r

is an arbitrary relation with scheme R(A).

AXIOMATICS OF FUNCTIONAL
DEPENDENCIES

• The proof of these rules follows immediately from the definition

of F-dependence.

• For example, the proof of the first is: if there exist elements i1

and i2 of r such that i1.X=i2.X, since Y X it follows that

i1.Y=i2.Y, i. e. F1 is valid.

• Similarly, F2 and F3 can be proved.

• Based on F1, F2 and F3 other inference rules can be proved.

AXIOMATICS OF FUNCTIONAL
DEPENDENCIES

AXIOMATICS OF FUNCTIONAL
DEPENDENCIES

• From the axioms F4 and F6 the consequence of unification and

decomposition can be formulated:

X --- > Y1, Y2, …, Yk, if and only if

X --- > Yi, за i =1,2,…,n

CLOSURES AND COVERS

• The set of F-dependencies that are logical consequences of F is

called F closure and is denoted by F+.

• Finding the F+ closure of a set of functional dependencies F in

general case is not easy to do.

• That is mainly because usually the number of closure attributes

is too big.

CLOSURES AND COVERS

CLOSURES AND COVERS

• Finding all F-dependencies is not always necessary.

Sometimes it is enough just to know whether or not an F-

dependency belongs to the closure.

• For example, if considering the relational schema R(A1, A2,

A3, A4, A5, A6, A7) with F-dependencies F{A1 ---> A4, A1A2

---> A4A5, A3A5 ---> A6, A5 ---> A7}, then it is obvious that

checking whether A1A2 ---> A5A7 is an element of F+ does

not require first determining F+.

CLOSURES AND COVERS

• The use of direct methods requires introducing the notion of

closure attribute.

• Let F be the set of F-dependencies in R(A) and

X ∈ P(A). The set X+ is called a closure of X if for any Y, Y ∈
P(A) where X --- > Y is an F -dependence, it follows that Y ⊆
X+.

• In other words, the closure X+ of an attribute X (possibly

composite) is the maximal attribute for which X --- > Х+ is

from F+.

CLOSURES AND COVERS

• A set of F-dependencies F is called a redundancy-free cover

if no proper subset of F is equivalent to F.

• It means that if F is a cover without redundancy, then for

every F′, F′ ⊂ F, we have (F′)+ ≠ F+.

• It is not difficult to check that, for example, the set G = {A ---

> B, B --- > C, AB --- > C, AC --- > B) is a redundancy cover

of the set of F-dependencies F = {A --- > B , B --- > C), since

F ⊂ G and F+= G+.

• It is interesting to note that there are cases where a set of F-

dependencies can have several covers without redundancy.

Questions and exercises:

1. What is functional dependency?

2. What are rules of functional dependencies ?

3. Which is types of Functional Dependencies in
DBMS ?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑Module 2. Relational approach in databases

❑ Topic 4. Development of a sample database.
Normalization.

❑ Lesson 1. Normalization of relational schemas.
Normal forms.

NORMALIZATION OF RELATIONAL

SCHEMAS. NORMAL FORMS.

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

Normalization of relational schemas.
Normal forms.

• Working with any relational schema R(A) involves using keys that

are a subset of the set of attributes A.

• The values of these attributes in the individual rows of each relation

r with relational scheme R(A) uniquely define them.

• More precisely, an attribute set X is a key for a relational scheme

R(A) with F-dependencies F if it meets two conditions:

1. Uniqueness: {X --- > A} ∈ F+.

2. Minimality: for any subset Y of X, Y ⊂ X, we have {Y --- >

A} does not belong to F+.

Normalization of relational schemas.
Normal forms.

• Since it is possible several sets X that meet the uniqueness and

minimality properties to exist, the key actually used in working

with the relations is assumed to be the primary key, hereafter

referred to simply as key.

• In the previous chapter, examples were discussed showing that

there are relational schemes that are not "good". In the next

section are presented methods to address the aforementioned

disadvantages of relational schemas.

NORMAL FORMS
• The normalization of a relational schema is a process aimed at its

transformation, in which certain constraints are imposed on the

newly obtained relational schemas, eliminating some undesirable

properties.

• Consider the relations “EMPLOYEE", “EMPLOYEE_1",

“EMPLOYEE_2" and “EMPLOYEE_3“.

• By the information contained in them, we can assume them to be

equivalent.

• Considered as mathematical objects, however, they are completely

different.

• The first one is 2-membered and the others are respectively 3, 5 and

6-membered relations.

NORMAL FORMS

NORMAL FORMS

NORMAL FORMS

• A relational scheme is in first norm form (1NF) if the domains of its

constituent attributes are atomic (simple), or if the attributes are

atomic and there are no repeated attributes.

• Atomicity is a concept that is determined in the specific case.

• For example, if the information that is processed in the EMPLOYEE

relation is only about the employees' identification numbers and

names, we should assume that it is in INF

• However, if in the course of working with this relation we need to

use parts of the identification number, e. g. day, month or year, the

identification number must be considered as a non-atomic

(composite) attribute and therefore the relation EMPLOYEE will not

be in INF.

NORMAL FORMS

• In some applications, the attribute "Name" may be a composite

attribute and its parts - first and last name are used.

• The relational scheme of the EMPLOYEE_3 relation contains

only atomic attributes and it is in INF. Its key is composed and

includes the attributes (Code, Year, Month, Day).

• An attribute may also be non-atomic in the case where its

elements are sets.

• Such is the case with the PERSONNEL relation. This relation is

not in INF. Its normalization in INF is given by the

PERSONNEL_1 relation.

NORMAL FORMS

NORMAL FORMS

• There may be various specific considerations for using

normalized relations, i. e. , relations in INF.

• One of the most important is the need for accuracy in the

representation of F-dependencies.

• For example, if the attribute “Star sign" is added to the relational

schema EMPLOYEE_1, then it is not possible to express the

presence of the F-dependency:

(Day, Month) → Star sign

NORMAL FORMS
• This F-dependency, however, is represented in the relational schemes

of the EMPLOYEE_2 and EMPLOYEE_3 relations

Another example of normalization to INF:
EMPLOYEЕ (No, name, Child (firstname, age))

EMPLOYEЕ (No, name); CHILDREN(No, firstname, age)

No NAME CHILD

FIRSTNAME AGE

500 DUPONT ANDRE 10

501 DURAND JEAN 11

501 DURAND PIERRE 12

510 LEFEBVRE PAUL 13

510 LEFEBVRE JACQUES 14

EMPLOYEE No NAME

500 DUPONT

501 DURAND

510 LEFEBVRE

CHILDREN No FirstName age

500 André 10

501 Jean 11

501 Pierre 12

510 Paul 13

510 Jacques 14

NORMAL FORMS

• Let R(A) be a relational scheme with F-dependencies F. An

attribute Y is said to be in complete functional dependence on an

attribute X, X,Y ∈ P(A) if {X --->Y} ∈ F+ and if for every subset

X', {X' --- > Y} ∈ F+ is satisfied.

• For example, the attribute “Star sign" is not in full F-dependence

on the attributes (Day, Month, Year), but it is in full F-

dependence on the attributes (Day, Month).

NORMAL FORMS

• An attribute X of a relational scheme R(A) with an F-dependency

F is called a primary attribute if it is part of the key. Otherwise it

is called non-primary.

• Нека е дадена релацията ОБУЧЕНИЕ с релационна схема:

EDUCATION (Faculty#, Name, City, Subject#, Mark)

• The key of this relation is composite (Faculty#, Subject#). The

set of F-dependencies is:

(Faculty#, Subject#) → Faculty#, Name, City, Subject#, Mark

Faculty# → Name, City

NORMAL FORMS

NORMAL FORMS

• Obviously, the Name and City attributes are not in complete F-

dependence of the key. What are the consequences of this?

1. Until a student passes at least one exam, information

pertaining to that student (Faculty#, Name, and City) cannot be

entered because the value of the Subject# key attribute is undefined.

2. The student's name and city are repeated as many times as

the number of passed exams.

3. If a student's only exam is cancelled, information about

that student that is not related to that exam will be deleted as a

consequence.

NORMAL FORMS

• A relational scheme is in second normal form (2NF) on the set of

F-dependencies F if it is in INF and every non-primary attribute

is in full F-dependency on the key.

• The above disadvantages of such constructed relational scheme

can be removed if instead we consider two relational schemes

that are in second normal form (2NF).

STUDENT (Faculty#, Name, City);

STUD_MARK (Faculty#, Subject#, Mark).

NORMAL FORMS

• The F-dependencies in these relational schemes are:

NORMAL FORMS
• In the resulting relations each non-primary attribute is in full F-

dependence on the key.

• Let R(A) be a relational scheme with a corresponding set of F-

dependencies F.

• It is assumed that X and Z are subsets of A. An attribute Z is said

to be transitively dependent on X if there exists such set of

attributes Y, Y ⊂ A, Z does not belong to XY, for which the

following properties applies:

NORMAL FORMS
• Example of transitive dependence

In the above example AUTHORS: Book → Author: Here, the Book attribute

defines the Author attribute. If you know the name of the book, you can learn the

name of the author. However, an author does not define a Book, because an author

can write several books. For example, just because we know the name of the

author, Orson Scott Card, we still don't know the name of the book.

• author → Author_Nationality : Similarly, the author attribute defines

Author_Nationality, but not vice versa; just because we know the nationality

doesn't mean we can identify the author.

But this table introduces transitive dependence:

Book → Author_Nationality: If we know the name of the book, we can define

the nationality using the "Author" column.

Auhtors

Author_ID Author Book Author_Nationality

Auth_001 Orson Scott Card Ender's Game USA

Auth_001 Orson Scott Card Ender's Game USA

Auth_002 Margaret Atwood The Handmaid's Tale Canada

NORMAL FORMS

• A relational scheme R(A) is in third-norm form (3NF) on the set

of F-dependencies F if it is in INF and no non-primary attribute is

transitively dependent on the key.

• The definition of 2NF requires the presence of INF, i. e. any

relational scheme that is in 2NF is also in INF.

• The definition of the 3NF does not require the relational scheme

to be in 2NF, but it can be shown that any relational scheme that

is in 3NF is also in 2NF.

NORMAL FORMS

NORMAL FORMS

• Suppose that the relational scheme R(A) is in 3NF but not in 2NF.

Let Z ∈ P(A) and Z is not in complete F-dependence on the key

K of R(A).

• This means that a subset K' of K exists for which the F-

dependence K' ---> Z applies.

• But since K is a key it follows that:

NORMAL FORMS

• Finally, a transitive F –dependence is achieved, i. e. R(A) is not in

3NF, which contradicts with the assumption made above.

• The opposite statement is not true. For example, the

STUDENT_2 relation is in 2NF but not in 3NF.

NORMAL FORMS

• The reason for this are the F-dependencies:

Fac_numb Name, City, Region;

City Region.

from which follows the transitive F-dependence

NORMAL FORMS
• What are the effects of having this transitive dependence?

1. It is not possible to register the fact that the town of Bansko is

from the Blagoevgrad region if not a single student is from the town

of Pleven.

2. If for some reason the students from Kazanlak move to another

faculty, then the information that the town of Kazanlak is from

Stara Zagora region will be lost.

3. If a new territorial zoning needs to be made, where the town of

Kazanlak will be the regional center, then in the relation

STUDENT_2 will be needed as many changes as all the students

from Kazanlak. And this leads to a waste of time and creates

conditions for introducing inconsistencies in the data, i. e. there are

conditions for violating the integrity of the data in the DB.

NORMAL FORMS

• The above mentioned disadvantages of the STUDENT_2

relational scheme are due to transitive dependency and are

avoided by removing it.

• This is done in the schemes of the STUDENT_3 and ZONNING

relations, which are derived from STUDENT_2. These two

relational schemes are in the 3NF.

NORMAL FORMS

Fourth normal form (4NF)

• A relation is in 4NF only if it does not contain multi-valued

dependencies.

• A multi-valued dependency exists when there are three attributes

(A, B and C) in a relation and for each value of A there is a well-

defined set of values B and a well-defined set of values C. The

set of values B is independent of C and vice versa.

NORMAL FORMS

• A multivalued field is a field that contains a collection of an array

of values of some type separated by commas. The figure below

shows the Employee table with the different skills that employees

have and their certificates. It should be noted that the skills and

certificates are not only independent of each other but are added

in a list separated by commas.

NORMAL FORMS
• To apply the 4th normal form we remove the multi-valued

dependencies by splitting the Employee table into three tables

Employee_Skill, Employee and Employee_Certification:

• Essentially, the 4th normal form transfer the collection of multi-

valued elements into different tables and records and thus makes

each record easier for direct access.

CONCLUSION

• The normalization of relational schemes is directly related to the

semantics of the data in the DB, not to the values and contents of

specific relations.

• It is not possible to establish functional dependencies by the

content of a particular relation, and this means that it is not

possible to establish its normal form.

• The DBMS is the one that must maintain data integrity by taking

into account its specified functional dependencies.

• However, if a relational scheme is in a 3NF, it is enough for the

DBMS to know only the key of the corresponding relation to

ensure the uniqueness of the elements in each relation.

CONCLUSION

• If the relational scheme is not in the 3NF, then storing and

maintaining the F-dependencies by the DBMS is needed. This

was shown with concrete examples.

• The above considerations justify the need to analyse relational

schemes and in particular to send them into the 3NF.

In the next section, two approaches for the normalization of

relational schemes are discussed.

Questions and exercises:

1. What is Normalization?

2. What are the various forms of Normalization?

3. What is First Normal Form?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 2. Relational approach in databases

❑ Topic 4. Development of a sample database.
Normalization.
❑ Lesson 2. Decomposition and synthesis of relational schemas.

Normalization algorithm by decomposition. Algorithm for synthesis
of relational schemas.

DECOMPOSITION AND SYNTHESIS OF RELATIONAL SCHEMAS.
NORMALIZATION ALGORITHM BY DECOMPOSITION. ALGORITHM FOR

SYNTHESIS OF RELATIONAL SCHEMAS.

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

Normalization algorithm by decomposition

• Two main methods are used for the normalization of relations

- decomposition and synthesis.

Normalization algorithm by decomposition

• Let R(A) be a relational schema. To perform a decomposition on R

means to define a set of relational schemas of the form:

• In other words, the new relational schemas have as attributes

some of the attributes of R, and their union gives the set of

attributes A, and the intersection of the attributes of any two

relational schemas can be either the empty set or the non-empty

set.

Normalization algorithm by decomposition

• The point of the idea to perform relational schema decomposition

is the need to remove unwanted anomalies, such as redundancy

anomalies, update, insertion and deletion anomalies.

• Let R(A1, A2, А3, A4) be a given relational schema, and let R' be its

decomposition R' = {R1(A1, А2), R2(А1 ,А3, А4). It is also assumed

that:

1. r is a relation with relational schema R(А1, А2, A3, А4)

2. r1 = πA1A2(r), т.е. r1:R1(A1, A2)

3. r2 = πA1A3 A4(r), т.е. r2:R2(A1, A3, A4)

Normalization algorithm by decomposition

• It is natural to ask whether, under the assumptions so formulated,

the relation r can be said to be recoverable under its projections r1

and r2.

• Let 𝑠 = 𝑟1𝐴1
⋈ 𝑟2, i. e. s is the natural union of 𝑟1 and 𝑟2 with

respect to the attribute 𝐴1. If r=s for any r with relational schema

R(A) and corresponding set of functional dependencies F, then

the decomposition of R(A) is said to have the lossless conjunction

property on F .

Normalization algorithm by decomposition

• Let R(A) be a relational schema with set of functional

dependencies F and R′={R1(A1), R2(A2)} be a decomposition of it.

• If r is a relational schema R(A) and ri is a relational schema Ri(Ai),

where: ri = πAi(r), i = 1, 2.

than

Normalization algorithm by decomposition

• We will illustrate this with some examples.

• The relational schema STUDENT (Fac__numb, Name, Address) is

considered, where the attribute Address denotes the address where

the student lives during the study.

• We note that several students may live at the same address and that

a student may change addresses several times during his/her

studies.

• This gives a reason for specifying a single functional dependency

in the STUDENT relational schema:

F={Fac_numb --→ Name}

Normalization algorithm by decomposition

• The following decomposition is considered:

R′= {R1(Fac_numb, Name), R2(Fac_numb, Address)}

• Let STUD be a relation with relational schema STUDENT, and

STUD1 and STUD2 be its projections.

Normalization algorithm by decomposition

Normalization algorithm by decomposition

• Let S be the natural union of STUD1 and STUD2, i. e.

• It can be seen that S = STUDENT. This is not accidental, since

there are conditions for lossless join decomposition on F.

Normalization algorithm by decomposition

• Another decomposition of the STUDENT relational schema is as

follows:

R′= {R1(Fac_numb, Name), R2(Name, Address)}

• Let again STUD be a relation with relational schema STUDENT,

and the relations STUD1 and STUD3 are defined as projections of

STUD as follows:

Normalization algorithm by decomposition

• The natural union of STUD1 and STUD3 is the STUD № relation:

Normalization algorithm by decomposition

• It can be seen that STUD_ and STUD are not identical. And this

fact is not accidental. It is enough to notice that:

(Fac_numb, Name) ∩ (Name, Address) = Name

(Fac_numb, Name) / (Name, Address) = Fac_numb

(Name, Address) / (Fac_numb, Name) = Address

• Decomposition basis is in transforming relational schemas that

are not in the 3NF with respect to a set of functional

dependencies F into relational schemas that are in 3NF.

Normalization algorithm by decomposition

• This transformation is done in two steps. In the first step, the

relational schemas are brought to 2NF, and in the second step to

3NF. The idea of bringing relational schemas into 2NF will be

discussed first.

• Let R(A) be a given relational schema which is in 1NF and not in

2NF. This means that:

а) the key of this relational schema is composite, i. e. it consists of at

least two attributes, which we denote by К1 and К2, К1 ∈ А and К2 ∈
А.

б) There are two subsets of A which we denote by X and Y, X ⊂ A, Y

⊂ A, as (K1, K2) --->Y and K1 --->X, i. e. the attribute X is not in full

functional dependence on the key.

Normalization algorithm by decomposition

• From the above explanations follows that it is possible to replace

the relational schema R(K1, K2, X, Y), which is not in 2NF, by two

relational schemas:

• If R1 and R2 are not in 2NF, the described procedure must be

applied again. This continues until the original relational schema is

transformed into a set of relational schemas, all of which are in

2NF. We denote a normalization procedure in 2HF by:

Normalization algorithm by decomposition
WHERE

➢ А - the set of attributes in the original relational schema;

➢ R1, R2 - relational schemas on which the original relational schema

is decomposed;

➢ F - the set of functional dependencies in A.

• To bring relational schemas into the 3NF, the following idea can

be applied.

• Let R(A) be a given relational schema, with F-dependencies F,

which is in 2NF but not in 3NF.

• This means that there are transitive functional dependencies in

R(A), i. e. , the set of attributes A can consists of К, X1, X2 and X3,

where K is a key and X1, Х2, Х3 are non-key attributes for which X1

--- >Х2 and {X --- >K)∈F+. It is not excluded that the X3 attribute

does not exist.

Normalization algorithm by decomposition

• Under these assumptions, the original relational schema R(K, X1,

Х2, Х3) can be decomposed into two relational schemas R1(К, Х1,

Х3) and R2(X1, X2). Let denote the normalization procedure from

2NF to 3NF by:

• Consider the full normalization algorithm by decomposition. It

denotes by NORM_2(RA,F) and NORM_3(RA,F) two Boolean-

type functions that check whether the relational schema RA is in

second and third normal form, respectively.

Normalization algorithm by decomposition

Normalization algorithm by decomposition

• The algorithm for normalization of relational schemes by

decomposition has some disadvantages.

• The complexity of this algorithm is too big. This is because it may

be that the number of keys in a relational schema grows

exponentially with the number of attributes and the number of

functional dependencies.

• No simpler is the task of checking the primality of an attribute.

• The decomposition can sometimes result in a much larger set of

relational schemas in the 3NF than necessary.

• These considerations give reason for consideration of one more

algorithm for the normalization of relational schemas.

Algorithm for relational schemas synthesis

• Briefly, the idea of the relational schema synthesis algorithm is the

following:

1. The set of functional dependencies F is considered, and the

individual dependencies are grouped by equality on their left

sides.

2. For each group obtained from point1, a separate relational

schema with a set of attributes is defined obtained from the union

of the attributes taking place in the functional dependencies of

each individual group.

Example. Consider the set of attributes {A, B, C} and the set of

functional dependencies F = {{A ---> B, A ---> C, B ---> C).

Algorithm for relational schemas synthesis

• From point 1 of the algorithm, two sets of F-dependencies are

obtained:

• It is immediately apparent that it is not in 3NF, since A ---> B, B --

-> C follows A ---> C, i. e. there is a transitive dependence.

• The incorrect result that is received is due to an excess of F-

dependencies. To remove this incorrectness, some refinement of

the original algorithm idea is required.

Algorithm for relational schemas synthesis

• Let f = {X ---> Y} be a functional dependence of F. Attribute X is

called a non-redundant attribute with respect to f if Y is in

complete functional dependence on X, i. e. if for any X' , X' ∈ X , it

follows that:

• Let’s remind that a set of functional dependencies F is

redundancy-free if for any f, f ∈ F it follows that:

• These two notions are substantially involved in specifying the idea

of synthesis of normalized relational schemas, so they are

described as procedures.

Algorithm for relational schemas synthesis

• The REDUNDANT_ATR procedure removes all redundant

attributes from the composite attribute B1 with respect to the

functional dependency B1 --- > B2. This procedure uses the

IS__MEMBER function, which determines the membership of a

functional dependency to a set of functional dependencies.

Algorithm for relational schemas synthesis

Algorithm for relational schemas synthesis

• Applying the REDUNDANT_ATR procedure to the left side of each

of the functional dependencies of F a set of functional dependencies

G is obtained, whose left sides are attributes without redundancy. We

denote this new procedure by REDUNDANT ALL ATR(F, G).

• By analogy to the procedure REDUNDANT_ATR, a procedure

REDUNDANT_FDEP(G,H) can be created that removes redundant

functional dependencies from G and results in a new set of

functional dependencies H that is equivalent to G, i. e. G+=H+.

Now the algorithm for synthesizing relational schemas in 3NF itself

can be described.

Algorithm for relational schemas synthesis

1. The procedure REDUNDANT_ALL_ATR(F,G) is applied.

2. The procedure REDUNDANT _FDEP(G,H) is applied.

3. The set of functional dependencies H is divided into groups, each

containing functional dependencies with the same left side.

4. From each group of functional dependencies, a relational schema is

defined that contains the union of the attributes appearing on the left

and right sides of the functional dependencies. The keys of the

relational schemas are chosen to be the attributes that are on the left

side of the functional dependencies of each group.

Questions and exercises:

1. What is decomposition of a relation rchema ?

2. Which is the properties of a relational
decomposition ?

3. What is synthesis of a relation schema ?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON
DATABASES

❑Module 2. Relational approach in databases

❑ Topic 5. Object-oriented database systems.

❑ Lesson 1. The essence of objects. Basic concepts in
the object-oriented approach.

THE ESSENCE OF OBJECTS. BASIC CONCEPTS IN
THE OBJECT-ORIENTED APPROACH.

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.

OBJECT NATURES

• In general, the word object can refer to any object: a book, a
building, a car, an enterprise, a city, a computer, etc. Objects may or
may not be material. For example, the liberation wars fought in
Europe in the 19th and 20th centuries can be seen as events that are
historical objects.

• In other words, the object everything that can be directly or
indirectly referred to. Similar generalizations are made in various
fields of science.

• Here are some examples from informatics:

1. The point, segment, vector, arc, circle, broken line, etc. are often
summarized by the name graphical object.

OBJECT NATURES

2. Integer, real quantities are simple objects. Sign and Boolean
quantities are simple objects.

3. Arrays, character strings, records, sets, files, etc. are composite
objects.

4. The algorithmic constructs sequence, iteration (loop), binary and
multivariate choice are control objects in the programs.

5. A subprogram can also be viewed as an object - a program object
that generalizes the objects described above and that includes a
description of only data objects or only operations objects of some
objects or contains objects of both types at the same time.

OBJECT NATURES

6. The text fragment is a text object, the graphic image is a graphic
object, the tables and the form are also objects and all of them
separately and in a certain combination can make up the more
complex information object - the document

• This list of examples could be extended. However, it is good to look
into the meaning that is put into each of these generalizations and
the benefit that can be derived from it.

• It is therefore natural to start by introducing the concept of object.

OBJECT NATURES

• The object consists of matter represented by some data types,
which is "spiritualized" by embedding in it certain behavioral rules.

• Like living organisms, objects exist in a particular environment,
which in this case is provided by relevant software, computer and
telecommunication systems.

• Objects can be active (assumed alive) or inactive (assumed not
alive). Active objects participate in a variety of events, such as the
"birth" of a new object or the "move" of an object from one location
to another.

OBJECT NATURES

• They "communicate" by exchanging information by sending
messages both to each other and to the rest of the world - to users.

• All of this active life is performed by objects under the guidance of
a "superobject", which is further referred to by the abbreviation
OM (Object Manager).

• The OM is a software subsystem that, according to the behavior
embedded in the objects, manages and controls their actions.

• Such an intermediate level between user and object frees the user
from knowing the specific details pertaining to individual objects.

OBJECT NATURES

• In "anatomical" terms, each object is represented by an
identification part, a body and a behavior. The identification part,
also called "head", identifies the object among other objects.

• The body of each object is a set of named attributes. Here the
variety is too big.

• The objects may be simple or may themselves include other objects,
thus representing a objects hierarchy. Each object is characterized
by a behavior represented by a set of rules. The rules resemble
subprograms.

OBJECT NATURES

• However, there is no basic program between them to activate them.
The rules use object-local variables as well as conditions under
which these rules can be activated.

• Solving a task using the object-oriented approach requires the
creation of different objects.

• Some of them will have similar properties relating to the structure of
the data and the corresponding operations applied to it. This is a
prerequisite for grouping such objects into groups called classes.

• Thus, each object can be viewed as a separate sample of some class.

OBJECT NATURES

• The introduction of the class concept creates conditions for a single
definition of the properties of objects of the same class.

• In nature, each object is usually individual, but it also has common
features with similar objects.

• For example, each apple in an apple basket differs somehow from
the others, but the recipes (methods) for making different types of
nectars are the same for all the apples in the basket or outside it

• In this sense, the set of all apples can be seen as a separate class of
objects different from, for example, the class of pears.

OBJECT NATURES

• The process of grouping objects into classes is a type of abstraction
and in this case is known as generalization.

• The highest in the hierarchy is the Object class, which is the
generalizing class for all other classes.

BASIC CONCEPTS IN THE OBJECT-ORIENTED
APPROACH

• Main concept in the object-oriented approach is the notion of
object. This concept is difficult to be defined because it varies too
much from one object-oriented system to another. Therefore, most
often each author specifies it and gives it a specific meaning.

• The object is information and a description of its processing.

• It can be said that an object is an "encapsulated" unit of data and
operations (methods) for processing it.

• The application of an operation does not require knowledge of how
to implement it.

BASIC CONCEPTS IN THE OBJECT-ORIENTED
APPROACH

• Each object can be considered as a value of some type. Let T be a
set of some data types and let T1 and T2 be two types of T.

• It is said that T1 is a subtype of T2 or also that T2 is a supertype of
T1 if every element (value) of type T1 can be considered as an
element of T2.

• The subtype T1 inherits the properties of its supertype T2. This
means that the data structures and operations defined in T2 are data
structures and operations for the type T1.

• One type can be defined as a subtype of one only other type.

BASIC CONCEPTS IN THE OBJECT-ORIENTED
APPROACH

• In such a case, we are talking about simple heredity.

• It is also possible for one type to be a subtype of several other types,
and then we are talking about multiple inheritance.

• The heritability in the set of types T is a binary relation, which is often
denoted by IsA. The properties of asymmetry, non-reflexivity and
transitivity are valid for it.

• The IsA relation defines in T a hierarchy, often called a type-
hierarchy.

• The term class is often used with the meaning of type in object-
oriented DBs. Class has a different meaning.

BASIC CONCEPTS IN THE OBJECT-ORIENTED
APPROACH

• Each class is a set of objects of the same type which is time-varying.
The object classes model sets of entities of different subject areas of
the real world.

• In the set of classes C, a binary relational inheritance can be defined
(denoted by SubsetOf) for which the asymmetry, nonreflexivity, and
transitivity properties are valid. If a class C1 is a subclass of C2,
then:

1. C1 is a subset of C2.

2. The C1 element type is a subtype of the C2 elements.

BASIC CONCEPTS IN THE OBJECT-ORIENTED
APPROACH

• The SubsetOf relation defines a hierarchy in C called a hierarchy of
classes or just a class-hierarchy.

• Specific to object-oriented DBs is the concept of persistence.
Persistence is a property of any object that determines its duration
of existence.

• In programming languages, objects are usually created and exist
within the implementation of the corresponding program.

• The requirement for a system to maintain the persistence of the
objects being created while the system itself exists is an important
prerequisite for extending it with object base management
capabilities.

BASIC CONCEPTS IN THE OBJECT-ORIENTED
APPROACH

• Objects cannot activate themselves. They are activated
"externally" by messages. The messages are similar to function
and procedure calls in procedure-oriented systems. They are
expressions pointing:

- the recipient object of the message;

- the content of the message.

• The content of the message is an instruction to apply an
operation on the recipient object given a list of arguments
(objects).

BASIC CONCEPTS IN THE OBJECT-ORIENTED
APPROACH

• It is natural to apply the same operation to objects of different
classes. For example, it is very convenient to use the "+" operation
for both integers and real numbers, or to use the read and write
procedures for quantities of different types. This idea is widespread
in object-oriented systems and is known as polymorphism.

• Polymorphism allows the same messages to be sent to different
objects, each "responds" in a manner consistent with its nature.

• Each object is distinguishable from the others in an object
environment. This is done by an identifier that uniquely identifies
the individual object.

BASIC CONCEPTS IN THE OBJECT-ORIENTED
APPROACH

• The identification of an object does not depend on its current
content, nor on its location, nor on the way it is accessed.

• Maintaining object identification is a characteristic feature of any
object system. In general, the main characteristics of object-oriented
systems can be summarized as follows:

1. Solving a task in the environment of an object-oriented system
requires:

а) determining the object classes required for the specific task;

BASIC CONCEPTS IN THE OBJECT-ORIENTED
APPROACH

b) defining the required messages to the different types of
objects;

c) composing a sequence of messages that solves the task.

2. Operations consist of sending messages. The result of sending a
message to an object is also an object.

3. Options are available for defining object classes that inherit the
properties of their superclass.

4. Object-oriented systems are extensible. System and user classes
have equivalent status.

BASIC CONCEPTS IN THE OBJECT-ORIENTED
APPROACH

• There are systems that satisfy only some of the above requirements
that are characteristic of object-oriented systems.

• If a system allows defining and operating with objects, it is accepted
to call it an object-based system.

• If an object-based system allows the grouping of objects into
separate classes, then it is a class-based system.

• It is obvious that object-oriented systems are a subset of class-
based systems, which in particular are a subset of object-based
systems.

BASIC CONCEPTS IN THE OBJECT-ORIENTED
APPROACH

CONCLUSION

• The links between classes in databases, that can be expressed, are
static and very limited. They mostly refer to the contents of
individual attributes, and in relational systems they are implemented
by compound of two or more tables.

• Links between individual instances, i. e. table rows, cannot be
expressed. Links are made only at the entire table level.

• Unlike the Database approach, the essence of the object-oriented
approach is the idea that an individual object existing in an
environment can interact with other objects by establishing links
with them.

CONCLUSION

• A brief review of the basic capabilities of computer systems for
storage and searching shows that their development is directly
related to the need to extend the range of these systems, thus
diversifying the subject areas in which they can be applied.

• This leads to the need to create computer models of complex real-
world objects, requiring corresponding complex data structures to
represent them.

• One possible approach to solving these problems is the object-
oriented approach.

CONCLUSION

• It become obvious that there are significant and varied points of
incompatibility between the Database Approach and the Object-
Oriented Approach. Nevertheless, it turns out that they can and are
already being applied together.

• In object-oriented databases, it is proposed to extend the DBMS
with object-oriented concepts.

• Such can be introduction of abstract data types, handling complex
objects, and the use of inheritance generated by the class-hierarchy
of object classes.

CONCLUSION

• A significant advantage of the approach is that it remains close to
the "Databases" approach, which provides efficiency in processing
large sets of structured data.

• On the other hand, this approach expands the range of applications
to which the ability to work with objects is added.

The strive for full joint use of the Database Approach and the Object-
Oriented Approach is to build systems that are object-oriented and

that have convenient query search facilities.

Questions and exercises:

1. Can you give an explanation of the word "object" ?

2. How do we call the process of grouping objects into
classes ?

3. What is a basic concept in the object-oriented
approach ?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES

❑ Module 2. Relational approach in databases

❑ Topic 5. Object-oriented database systems.

❑ Lesson 2. Object-oriented database management
systems. Architecture.

OBJECT-ORIENTED DATABASE MANAGEMENT

SYSTEMS. ARCHITECTURE.

Ullman, J., Widom, J. (2009) DATABASE
SYSTEMS The Complete Book (2rd ed),

Upper Saddle River, New Jersey.

Azalov, P. (1991) Database, Sofia.Elvis C. Foster, Shripad V. Godbole. (2022)
Database Systems. A Pragmatic Approach

(3rd edition), CRC Press.

Object-oriented DBMS
• One of the areas of application of the object-oriented

approach is databases.

• The main reason for this is the desire of specialists to

expand the scope of applicability of DBMS in areas such as

artificial intelligence, image and sound processing systems,

office systems, and others.

• There are various reasons why modern DBMSs cannot be

directly used for these purposes, but the most important of

them can be summarized as follows:

a) lack of capabilities to represent complex data

objects;

Object-oriented DBMS
b) lack of appropriate means of expressing the

behavior of the modeled real objects;

c) lack of mechanisms registering and processing

events that can occur with the objects of the modeled subject

area.

• There are two known approaches to overcome the

shortcomings mentioned in the DBMS. Through one of

them, called the "bottom-up" approach, the aim is to

extend the traditional DBMS with an object-oriented

concept and in the first place with the maintenance of

complex information objects.

Object-oriented DBMS
• The other, called the "top-down" approach, aims to extend

object-oriented programming languages with the ability to

maintain persistent objects, i.e. of objects that continue to

exist and after the completion of the execution of the program.

• Both approaches have their advantages and disadvantages.

However, there is a unanimous opinion that an object-oriented

DBMS should be a "symbiosis" of the main ideas of these

approaches. This gives reason to assume that a system is an

object-oriented DBMS (OODBMS) if it satisfies two basic

requirements:

Object-oriented DBMS
1. It is a DBMS in the traditional sense of the term.

2. It is object-oriented, i.e. supports object classes, inheritance

and polymorphism, object identification and extensibility.

TYPES, CLASSES AND OBJECTS

The concept of type is fundamental in modern programming

languages. A type unites a set of elements, called values, and a

corresponding set of operations applied to those values.

• Two types of types are used - simple (atomic) and composite

(structural). Composite types include both simple and

composite types.

Object-oriented DBMS
• In this way, it is possible to build a hierarchy of types.

Constructors such as array, list, record, and set are used for this

purpose.

• Each variable is considered as a quantity receiving values of a

specific type, which is also assumed to be its type.

• Despite some common features, the concept of class is different

from the concept of type. While types are mainly used during

compilation when checking for correctness of the program,

classes are designed to create and maintain objects.

• The classes, as well as the types, classify the values into

separate sets.

Object-oriented DBMS

• Unlike types, however, classes support another set (class

extension), which includes the actually generated instances,

called objects.

• Each object consists of a certain number of variables defining

its structure. In some object-oriented systems, the type of

variables can be specified at program execution time.

• This naturally creates greater flexibility, but requires a

mechanism for the so-called late connection, due to the fact that

it is not clear in advance which of the methods (procedures) will

be used.

Object-oriented DBMS
• Objects in object-oriented systems are encapsulated. This is

expressed in the presence of two main parts in each object - an

interface and an realization (implementation) part.

• The interface part represents a set of operations that can be applied

to the object.

• The implementation part describes the structure of the object and

the way in which each of the operations is implemented.

• Objects are accessible only through their interface part, while the

implementation part is "hidden", i.e. inaccessible. This way,

conditions are created to make changes to the implementation part

without affecting the programs using the objects.

Object-oriented DBMS
• Protection of application programs from changes in the

implementation part is a property of object-oriented systems,

called implementation independence or data independence.

COMPLEX OBJECTS AND EXPANDABILITY

In the implementation of some non-standard applications, the basis

of which the DBMS is used, there is a need to expand the system

with capabilities both for defining complex data objects and for

corresponding operations for their processing.

• Complex or composite data objects consist of other objects

that can also be complex.

Object-oriented DBMS

• The structure of the complex object is determined by the

various constructors and by the sequence in which they are

applied over the individual components (sub-objects)..

• The relational model does not allow defining and operating

with complex objects. Constructors allowed in it are only

record (n-tuple) and set, but their nesting is not allowed.

• Objects in object-oriented data models are complex objects

without limitation in the structure of their constituent

components.

Object-oriented DBMS
• The use of complex objects requires the implementation of

corresponding methods for operating on them. And since an

object-oriented DBMS combines the capabilities of an object-

oriented programming system and a classical DBMS, it can be

assumed that these operations are provided by the programming

environment.

• In such cases, however, it will be necessary to transform the data

from the database into a form appropriate for the particular

environment, which will consume too much time. As a

consequence, complex object processing operations should

represent a natural extension and complement of DBMS

operations.

Object-oriented DBMS
IDENTIFICATION AND STABILITY OF OBJECTS

• In object oriented DBMS, objects are distinguishable from each

other. Hence the requirement for their identification.

• While in programming languages the identification of objects is

reduced to addressation and in the DBMS to the value of a primary

key, the identification of objects in object-oriented DBMSs does not

depend on their physical location, nor on the specific values of their

attributes.

• In many systems, the problem of object identification is solved by

systematically generating an identifier of each object, which

uniquely identifies it throughout the object environment and is

independent of its physical location.

Object-oriented DBMS

• The persistence of some objects in object-oriented DBMSs is

expressed in their ability to "exist" after another working "session"

with the system, i.e. they can be repeatedly used.

• An important problem concerning the sustainability of objects is

the definition of conditions under which some objects are

sustainable and others are not.

• Different solutions to this problem are possible. It could be

assumed that every created object becomes sustainable. However,

this would mean that also the objects obtained as intermediate

results would have this property.

Object-oriented DBMS
• Another possibility is to specify sustainability at class level, i.e.

only the objects of individual classes will be sustainable. In

addition to this option, the possibility may be provided for objects

of other classes to be specifically indicated as sustainable.

• A third possibility is that the sustainability of the object is in

function of the operations with which it was obtained.

QUERY LANGUAGES

• A common case in classical DBMS is that the actual processing of

the data is described by means of a general-purpose programming

language such as Fortran, Pascal, or C, and the access to the data

from the database is described by means of a data sublanguage

such as SQL.

Object-oriented DBMS
• The above approach has significant disadvantages, and this is one

of the considerations for object-oriented DBMS development.

• The requirements that are placed on query languages in object-

oriented DBMSs are, for the most part, also requirements for

classical DBMSs.

• A brief overview of the more significant ones follows below:

1. The query language must be a high-level language. This means that

regardless of the object type, which is generally a complex object, the

query language must provide simple expressions for its processing.

Object-oriented DBMS
2. The query language should be independent of specific

applications, i.e., it must be universal in relation to the

subject area under consideration.

3. Query language closure. In addition to object processing

tools, the query language must provide the means to build

and maintain class-hierarchy and heredity, define complex

objects, manage the objects obtained as results of some

operations, etc.

Object-oriented DBMS

4. Query language power. In addition to the expressive

power of relational languages, languages in object-oriented

DBMS must allow the definition and processing of recursive

objects, as well as navigation along the corresponding

class-hierarchy.

5. Query optimization. The query language in the object-

oriented DBMS must allow for opportunities for system

optimization.

Architecture of object-oriented DBMS

• The advantages that an object-oriented DBMS has over a classical

DBMS give rise to new and difficult problems that must be

overcome when creating such systems.

• Although there is still no unified concept of the architecture and

functions of object-oriented DBMS, based on some of the already

created DBMS, we will look at the main components that build

them.

BASIC COMPONENTS

The basic components of an object-oriented DBMS are several, and

each of them can be viewed as a separate subsystem.

Architecture of object-oriented DBMS

• Such are the manager of objects, cited earlier as OM

(object-manager), MM the manager of methods (method

manager) and CM - manager of classes (class manager).

Basic components of an object-oriented DBMS

Architecture of object-oriented DBMS

• The most important functions of OM are to create and

destroy, store and maintain the objects in the database.

Activation of OM is done by sending messages, where

OM knows the name of the message and the identifiers of

the objects participating in it.

• In order to execute the specified method, the OM must

first establish the belonging of the objects to their

respective classes.

Architecture of object-oriented DBMS

• The tasks of the CM are to create and store the class descriptions

of objects and establish relationships between them, thus building

the class-hierarchy of classes.

• Referred to the functions of a classic DBMS, the functions of the

CM are close to those, up to the maintenance of the DBMS

catalog.

• The purpose of MM is to create, store, and maintain methods in

source and object code.

• The methods are system (built into the system itself) and user.

Architecture of object-oriented DBMS
• Methods are defined by the user within the newly created classes

needed for a particular application. User methods are written in a

specific object-oriented programming language.

• It is difficult to unite in one the diversity of concepts underlying the

architectures of object-oriented DBMSs. For this reason, only their

characteristic components are presented here.

• Unlike object-oriented programming languages, in which objects

exist only during the execution of the corresponding program,

object-oriented DBMSs are characterized by the possibility of

working with persistent objects.

Architecture of object-oriented DBMS

• Each object is assumed to be uniquely identified by its own identifier, by

which it is accessible both in RAM and external memory.

• In many implementations, this identifier is a pair of names - the name of

a file and the name of a record containing the object. They can be

encoded in four bytes.

• With 11 bits for a file name and 21 bits for a record name, the number of

files can be up to 2048, and the number of records in each of them can be

over two million.

• Objects located in external memory have the same status as those in

RAM. For this purpose, a virtual memory is maintained, as the objects

that are present in the operating memory are registered in a special table.

Architecture of object-oriented DBMS

• Each object is physically constructed from two parts. One of

them is systemic and includes: information about the class to

which the object belongs; a counter of the objects for which the

object in question is subordinate, i.e. it is a subset of them and

two flags specifying whether the object has undergone changes

and whether to the object has been send commanded for its

destruction.

• Objects that are n-tuples of other objects or represent sets of

objects contain only primitive values or identifiers of their

constituent objects.

Architecture of object-oriented DBMS

• Because of the mutability of sets as structures, their representation in

object space requires an appropriate memory allocation strategy as well

as appropriate file system capabilities to handle files whose records are of

variable or indefinite length.

Despite the simplicity of adopting the relational approach and the use

of relational schemas, some structural limitations are the reason for

searching for new ways. One of them is the development of new data

models with richer semantics. These are, for example, the Entity-

Relationship data model, the Semantic Data Model, and the Object-

Oriented Data Model.

Benefits of OODBMS

Questions and exercises:
1. Which of the following is true concerning an

OODBMS?

A. They have the ability to store complex data types on the Web.

B. They are overtaking RDBMS for all applications.

2. Which of the following is an ordered collection
of elements of the same type ?

A. Set

B. Bag

C. List

D. Dictionary

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 3. Algorithms and their applications in

databases for query optimization

❑ Topic 1. Introduction to algorithms

❑ Lesson 1. The role of algorithms in computation.
Algorithms as a technology.

THE ROLE OF ALGORITHMS IN

COMPUTATION. ALGORITHMS AS A

TECHNOLOGY.

Cormen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L., Stein, Clifford (2009).
Introduction to Algorithms (3rd ed.). MIT Press and McGraw-Hill.

https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein

Introduction

• What are algorithms?

• Why studying algorithms is useful?

• What is the role of algorithms used in computers?

• In this lecture, we will try to give answers to these questions.

Algorithms
• Algorithm (from the name of the scholar Al-Khawarizmi) is a

term from mathematics, computer science, linguistics, and
other fields that refers to a finite sequence of instructions or
an explicit description of a step procedure used for solving a
problem, often related to computation or data processing.

Turing machineAlan Mathison Turing

Algorithms
Turing machine is an imaginary computer described by the English mathematician Alan Turing in 1936.
Turing’s work is the first accurate definition of the notion algorithm (also called mechanical, formal or
effective procedure). It is used to prove basic results in computer sciences mainly in the fields calculation and
complexity of algorithms as well as mathematical logic.

Turing machine consists of four components:

1. Memory – potentially infinite tape consisting of cells, in each cell is written a symbol of some finite
alphabet. The alphabet contains a special blank symbol (usually written as “0”) and one or more other
symbols. Every moment of machine’s work the tape is finite, but if needed we can add new cells on the
left or on the right, containing the blank symbol.

2. Head that in each moment of calculation is over a definite cell of the tape. In each tact the head reads
the symbol of the cell over which is situated, writes a new symbol and moves left or right on the tape
depending on the instruction and the read symbol.

3. Program - a finite list of instructions which unlike contemporary computers is separate from the
memory. Each instruction is a set of indications what to be done if the head has read the i-th letter
from the alphabet. Each indication contains information which symbol should be written back on the
tape, which instruction will be performed on the next step and where (left or right) to move the head.

4. Register containing the number of the active instruction (program counter). One instruction is said to
be initial i.e. calculation starts with entering its number in the program counter. There is a final
instruction as well – when reaching it the calculation stops.

Algorithms

• Informal, an algorithm is any well-defined computational
procedure that takes one or more values as input and
exports another value as output.

• In other words, algorithms are like recipes for performing
a well-defined task.

• In this line, some block code that computes, for example,
the Fibonacci number sequence is an execution of a
particular algorithm.

• Even a simple function for addition two numbers can be
considered an algorithm, even a very simple one.

Algorithms
• Algorithms should be studied first because they do not

depend on a particular technology.

• You don't need to know Java or C++ or any new
technology to understand algorithms.

• It requires having an understanding towards the concept
of the steps that should be followed to solve a certain
problem (with certain programming languages with
similar features).

• Algorithms are important for the computer sciences field
because they enable making analysis of different
calculation ways to achieve the best way for solving a
problem.

Algorithms

• By "best way" is meant the one that with the least
resources can get to the solution the fastest.

• An algorithm is a powerful tool for solving a well-defined
computational problem.

• For example, we may need to sort a sequence of
numbers in ascending order.

• This problem arises frequently in practice and gives good
grounds for the introduction of many standard
techniques and analysis tools.

Algorithms

• Here's how we can define the sorting problem:

• Input: a sequence of n numbers: a1, a2, …, an

• Output: change (reordering) a'1, a'2, …, a'n, so that a'1

a'2
… a'n .

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Algorithms

• Such an input sequence is called an instance of the
sorting problem.

• In general, an instance of a problem consists of the input
(satisfying constraints imposed for the problem) needed
to calculate the problem solution.

• Because many programs use it as an intermediate step,
sorting is a fundamental operation in computer sciences.

• As a result we have a large number of good sorting
algorithms that we can use.

Algorithms

• Which is the best algorithm to perform a particular
activity depends more on other factors, such as:

– the number of items to be sorted

– possible restrictions on the values of the elements

– Architecture of the computer

– the type of storage devices: main memory, disks, etc.

• An algorithm is said to be correct if for every correct
input, it stops with the correct output.

• We say that the correct algorithm solves a given
computational problem.

Algorithms

• The incorrect algorithm may not stop at all in some input
cases, or may stop with an incorrect answer.

• Contrary to what might be expected, incorrect algorithms
can sometimes be useful if we can control their error
rate.

• Usually, however, we should strive to use and compile
correct algorithms.

• An algorithm can be defined as a computer program, as
long as an accurate description of the computational
procedure to be followed is provided.

Algorithms

• What problems are solved by algorithms?

• Practical applications of algorithms are everywhere and
include the following examples

– Algorithms for defining gene sequencing in
bioinformatics

– The Internet enables people around the world to
quickly access and retrieve large amounts of this
information. Using clever algorithms, Internet objects
are able to manage and manipulate this large volume
of data.

Algorithms

• What problems are solved by algorithms?

• Practical applications of algorithms are everywhere and
include the following examples:

– E-commerce enables goods and services to be
contracted and exchanged electronically, and it
depends on the privacy of personal information such
as credit card numbers, passwords and bank
statements.

– Technologies used in e-commerce include
cryptography and digital signatures, which are based
on numerical algorithms and the number theory.

Algorithms

• What problems are solved by algorithms?

• Manufacturing and other commercial enterprises often
need to allocate scarce resources in the most useful way.

• A petrol company may wish to know where to place its
wells in order to maximize expected profits.

• A political candidate may want to determine where to
spend money on an advertising campaign in order to
increase the chances to win the elections.

• An Internet service provider may want to determine
where to place additional resources to serve its
customers more effectively.

Algorithms
• What problems are solved by algorithms?

• These are all examples of problems that can be solved using
linear programming, which we will study in later lectures.

• Some of the most important algorithms a computer engineer or programmer
should know:

– Binary search – a technique for finding a particular value in a one-
dimensional array (or in any data structure that is sorted) by excluding half of
the data at each step.

– Dijkstra's algorithm – Dijkstra's algorithm is used to find the shortest path
between the nodes of a graph, and they can represent road network.

– Floyd-Warshall – The Floyd-Warshall algorithm is used to find the shortest
paths between all pairs of vertices in a weighted oriented graph.

– Kruskal algorithm – type of greedy algorithm. This is any algorithm that is
implemented by selecting (locally) the maximum (or minimum) element of a
set at each step, and the goal is to reach the global maximum.

Algorithms as a technology

• Suppose that computers are infinitely fast and the
computer memory is infinitely large. Is there a reason to
learn algorithms?

• The answer is yes, if for no other reason than to show
that our algorithm terminates after a certain time and
finds the correct answer.

• If computers were infinitely fast, any proper problem
solving method would work.

• You'll probably want your implementation to be among
the best in software engineering practice (e. g., your
implementation should be well designed and
documented).

Algorithms as a technology

• Computer time and memory are therefore limited.

• You need to use these resources wisely, and using
algorithms that are time or memory efficient will help
you do this.

• Different algorithms developed to solve the same
problem often differ completely in their effectiveness.

Algorithms as a technology

• In general, system performance depends on both the
choice of fast hardware and the use of efficient
algorithms.

• Algorithms are the basis of most technologies used in
modern computers.

• Furthermore, with the ever-increasing capabilities of
computers, we are using them to solve bigger problems.

• Having a solid knowledge base and algorithmic technique
is one characteristic that separates truly skilled
programmers and engineers.

Algorithms properties

Input data

• In the description of each algorithm, quantities are used.
Some of them are constants and others are variables.

• Before being used, the variables must be given values
called initial values.

• Some of the variables get their initial values within the
description of the algorithm itself. Other variables
receive their initial values as input data, i. e., during the
execution of the algorithm.

Algorithms properties

Input data

• This way the variables act as parameters of the
algorithm.

• For example, in Euclidean's algorithm they are the
natural numbers that the variables M and N take as
values.

• There are cases where the set of inputs of some
algorithms is the empty set.

Algorithms properties

Output data

• The execution of each algorithm is aimed at obtaining a
certain result.

• Most often, this result is an extreme value of some of the
quantities used in the algorithm.

• These final values depend on the initial values, i. e. on
the input data.

• The output result in Euclidean's algorithm is the extreme
value of the variable a (or b).

Algorithms properties

Algorithms have the following important properties:

1. Massiveness– the algorithm is used to solve a class of
homogeneous tasks, not individual specific tasks. For
example, Euclidean's algorithm allows to find the greatest
common divisor of any two natural numbers. The
effectiveness of the application of algorithms is due to their
massiveness. Thanks to it an algorithm can be repeatedly
applied in different cases. Each algorithm can be applied to
a certain class of data, which we will refer to as the
algorithm's eligibility.

Algorithms properties

Algorithms have the following important properties:

2. Definiteness – the description of the algorithm is clear
and contains no ambiguities. It defines unambiguously the
actions to be carried out. Given certain data (values of the
external variables), the algorithm produces the same result
regardless of who the executor is. Definiteness allows
algorithms to be executed by a wide range of
implementors. Each of the instructions in the algorithms
must be written in a way that avoids ambiguity.

Algorithms properties

Algorithms have the following important properties:

3. Effectiveness - a guarantee that, given any admissible
values of the initial data, a finite number of elementary
operations will lead to the desired result. Finalizing the
algorithm in finite time. This property of algorithms allows
them to be practically applied. The finite execution time of
an algorithm is a consequence of the assumption that each
algorithm consists of a finite number of steps and that each
step (each elementary action) is executed in a finite time.

Algorithms properties

Algorithms have the following important properties:

4. Discreetness - the algorithm consists of a finite number
of elementary prescriptions. Very often, instead of
"elementary prescription", other terms with the same
meaning are used - instruction, command, operation or
operator.

The algorithm is a procedure for solving a mass task over
given objects, which determinately, in a finite number of
steps, starting from specific input data and applying the

allowed operations leads to the desired result.

Conclusion
• The role of algorithms in everyday life as well as in science and

engineering is too great.

• Algorithms are an appropriate and convenient form for the
exposition of scientific results - there are a number of journals in
which reports of various newly discovered methods, mainly in
the field of mathematics, are printed in the form of algorithms.

• The great importance of algorithms determines the interest in
them. Experts from every field of science and technology are
looking for algorithms to solve various tasks both for immediate
application in practice and for the development of science.

• Algorithms are widely used in database query optimization
(the process of choosing a suitable execution strategy for
processing a query).

Questions and exercises:

1. What are algorithms and why studying
algorithms is useful?

2. What is the role of algorithms in computation ?

3. What are the main properties of algorithms?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 3. Algorithms and their applications in

databases for query optimization

❑ Topic 1. Introduction to algorithms

❑ Lesson 2. Design and analysis of algorithms

DESIGN AND ANALYSIS OF

ALGORITHMS

Carmen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L., Stein,
Clifford (2009). Introduction to Algorithms (3rd ed.). MIT Press and McGraw-Hill.

https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein

Analysis of algorithms

• Analyzing an algorithm comes from predicting the
resources that the algorithm requires.

• Sometimes, resources such as memory, or computer
hardware are essential, but most often we want to
determine the computation time.

• In general, when analyzing several candidate algorithms
to solve a problem, we need to identify the most efficient
one.

• Such an analysis may show more than one candidate
suitable for solving the problem, but we may throw out
some algorithms in the process of analyzing.

Analysis of algorithms
Analysis of sorting by insertion

The time required for the insertion sorting procedure
depends primarily on the size of the input: sorting a
thousand numbers takes longer than sorting three
numbers.

• Moreover, sorting by insertion may have different times
to sort two input sequences of the same size depending
on how they are already sorted.

• In general, the running time of the algorithm grows with
the size of the input, so traditionally the analysis consists
in describing the running time of the algorithm as a
function of the size of its input.

Analysis of algorithms

Analysis of sorting by insertion

• To do this, we need to define the terms "runtime" and
"input size" more carefully.

• The idea of the size of the input depends on the problem
being examined.

• For many problems, such as sorting, the most natural
measure is the number of elements per input, e.g. the
size n of a given sort array.

Analysis of algorithms
Analysis of sorting by insertion

• For many other problems, such as multiplying

two integers, the best measure of input size

is the total number of bits needed to represent

the input in binary format.

• Sometimes it is more appropriate to describe the input size with
two numbers rather than one.

• For example, if the algorithm input is related to a graph, the size
of the input can be described by the number of vertices and
edges of the graph.

• We should specify which input measure size will be used for
each problem that we’re studying.

Analysis of algorithms

Analysis of sorting by insertion

• The running time of an algorithm for a particular task is the
number of primitive operations or "steps" that are
executed.

• It is convenient to define the notion of step so that it is
machine independent.

• If we assume that each step of a source code takes a
constant time to execute, then we will have a different time
required for each step.

• This point of view is consistent with the RAM model, and it
also reflects how pseudo-code would be implemented on
the most computers.

Analysis of algorithms

Analysis of sorting by insertion

• In our analysis of sorting by insertion, it is necessary to
consider both: best case in which the array elements are
already sorted, and the worst case in which the input
array is reverse sorted.

• The worst-case timing of the algorithm gives us an upper
bound on the running time for each input.

• Knowing this ensures that the algorithm will never take
longer.

Analysis of algorithms

Analysis of sorting by insertion

• For some algorithms, the worst case happens
quite often.

• For example, when searching a database for a
particular piece of information, the search
algorithm will fall into the worst case where the
information is not available in the database.

• In some applications, searching for missing
information is quite common.

Analysis of algorithms
Pseudo-code

• Pseudo-code is a program code that is unrelated to a
computer's hardware and requires rewriting the code for
a computer before the program can be used.

• There are no strict syntax rules, it's designed for humans,
not computers.

– High-level description of the algorithm

– More structured than human language

– With less details than the program

– Preferred notation for describing algorithms

– Hides problems when writing a program.

Analysis of algorithms

Example: Finding the largest element of an array.

Algorithm arrayMax(A, n)

Input: array A of n integers

Output: maximum element of A

currentMax <- A[0]

for i <- 1 to n−1 do

if A[i] > currentMax then currentMax <- A[i]

return currentMax

Analysis of algorithms

Pseudo-code details

• Managing operators

if…then…[else…]
while…do…
repeat…until…
for…do…
The space replaces the brackets.

• Method defining

Algorithm method(arg[, arg…])
Input…
Output…

Analysis of algorithms

Pseudo-code details

• Calling a function/method
var.method (arg[, arg…])

• Value return

return expression

• Expressions

<- Assignment (like = in C++)
= Equality testing (like == in C++)
n2 - degrees, etc. mathematical notations are allowed.

Analysis of algorithms

Elementary operations (primitives)

• Expression calculation.

• Assigning a value to a variable.

• Indexing in an array.

• Calling a function.

• Return a value from a function.

Analysis of algorithms
Counting the elementary operations

By checking the pseudo-code, we can determine the
maximum number of primitive operations performed by the
algorithm as a function of the input size.

Analysis of algorithms
Estimation of running time

• The arrayMax algorithm performs 7n-1 elementary
operations in the worst case.

• Define:

a = the running time of the fastest elementary
operation.

b = the running time of the slowest elementary
operation.

• Let T(n) be the worst case for arrayMax. Then
a(7n - 1) ≤ T(n) ≤ b(7n - 1).

• The running time T(n) is therefore bounded by two linear
functions.

Design of algorithms

• Many useful algorithms are recursive in structure: to
solve a given problem, they recursively call upon
themselves one or more times to deal with closely
related subproblems.

• These algorithms typically follow a “divide-and-conquer”
approach: they divide the problem into several
subproblems that are similar to the original problem but
smaller in size, and solve the subproblems recursively,
and then combine solutions to create a solution to the
initial problem.

Design of algorithms

• The divide-and-conquer paradigm involves three steps at
each level of recursion:

- Dividing the problem into a number of sub-problems
that are smaller copies of the main problem;

- Conquering the sub-problems and solving them
recursively. If the sub-problem sizes are small enough,
however, just solve the sub-problems in a simple way.

- Combining the solutions to the sub-problems into a
solution for the initial problem.

The algorithm for sorting by merging (merging sort) uses
the divide and conquer paradigm.

Design of algorithms

• When an algorithm contains a recursive calling itself, we
can often describe the running time with a recurrence or
iteration equation that describes the running time on a
problem of size n in terms of the running time on smaller
inputs.

• We can then use mathematical tools to solve the
iteration and provide bounds on the performance of the
algorithm.

Design of algorithms

merge

sort

divide-

and-

conquer

Summary

• The analysis part includes the concepts of input size,
time complexity and asymptotic growth rate bounds.

• Except the worst-case complexity, analyzing of average
complexity is also affected.

• Techniques for estimating the complexity of algorithms
and the use of these techniques on classical samples are
discussed.

• Different algorithms like time complexity and memory
complexity are analyzed.

Summary

• The "design" part introduces a number of algorithmic
schemes designed to facilitate the creation of efficient
algorithms: "divide and conquer", "dynamic
programming", "greedy", "graph traversal",
"backtracking" and many other algorithmic techniques
and approaches.

• Schemes are applied to solve typical tasks.

• Schemes for compiling approximation algorithms are
demonstrated.

Questions and exercises:

1. What is analysis of algorithms?

2. What is design of algorithms?

3. What is pseudo-code?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 3. Algorithms and their applications in

databases for query optimization

❑ Topic 1. Introduction to algorithms

❑ Lesson 3. Complexity of algorithms. Types of complexity
and their estimation

COMPLEXITY OF ALGORITHMS. TYPES OF
COMPLEXITY AND THEIR EVALUATION.

Carmen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L., Stein,
Clifford (2009). Introduction to Algorithms (3rd ed.). MIT Press and McGraw-Hill.

https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein

Introduction

• The topic of algorithm evaluation and complexity is
important and should not be overlooked.

• When considering a computer algorithm, we are generally
interested in three of its properties:

– Simplicity (and elegance) ;

– Correctness;

– Fastness.

• While the first of these anyone can "measure" intuitively
(and somewhat subjectively), the last two require a much
deeper analysis.

Techniques for analyzing algorithms

• Consider the following program fragment of an algorithm:

1) n = 100;

2) sum = 0;

3) for (i = 0; i < n; i++)

4) for (j = 0; j < n; j++)

5) sum++;

We are interested in how fast the above algorithm will
run. What we can do experimentally is to check how long
will it take to finish its work.

Techniques for analyzing algorithms

• To examine its behavior more generally, we can run it for
other values of n.
Dependency between input data size and execution speed

• when we increase n ten times, the program execution time
increases 100 times.

Techniques for analyzing algorithms
• Let us examine this fragment more deeply

– On lines 1) and 2) there is a static initialization that takes constant
time. Let's denote it by a.

– For the operations i = 0 and i++, as well as for the check i < n, again a
constant time is required (each of them represents a constant
number of instructions by the processor), we will denote it by b, c, d.

– In line 4) we denote the times required for the operations j = 0, j < n
and j++ by e, f, g.

– Last, the operation on line 5) also requires constant time: let it be h.

Techniques for analyzing algorithms

• With thus introduced notations, it is not difficult to calculate
the total running time of the algorithm for an arbitrary value
of n:

a + b + n.c + n.d + n.(e + n.f + n.g + n.h) =

= a + b + n.c + n.d + n.e + n.n.f + n.n.g + n.n.h =

= n2.(f + g + h) + n.(c + d + e) + a + b

Remind that a, b, c, d, e, f, g, h are constants. Let denote:

i = f + g + h

j = c + d + e

k = a + b

Techniques for analyzing algorithms

• The constants i, j and k are important for the algorithm's fastness,
but are not determinant. In practice, when we study the
effectiveness of an algorithm, we are not interested in them. These
constants depend primarily on the machine representation of our
program, as well as the speed of the machine on which it is
performed.

• Moreover, when examining the behavior of our algorithm, we can
ignore even the single-valued j. n and k and keep only the one in
which n participates to the most.

• The purpose of this "simplification" is to leave only the most
significant feature for a given algorithm, i. e. , the feature on which
the runtime depends the most, i. e. , which grows the fastest as the
input data size increases.

Techniques for analyzing algorithms

• Let consider two functions that show the running time of two
given algorithms A1 and A2 depending on the size n of the
input data: f = 2. n2 and g = 200. n.

• It is easy to see that although the coefficient of g is much
larger than that of f, when n passes some fixed value (in this
case n > 100), the A2 algorithm will solve the task faster than
A1.

• Moreover, as n increases, the ratio between the running times
of the two algorithms increases in favor of A2.

• Asymptotically, the A2 algorithm is faster and its complexity is
linear, while that of A1 is quadratic.

Techniques for analyzing algorithms
• What is a complexity?

• Briefly complexity is how the required time or memory to
execute an algorithm changes by changing the input data size.

• In formally evaluating the complexity of algorithms, we will be
interested in their behavior at n tending to infinity. We will
describe the complexity of an algorithm by functions of the
type f : N → N .

Techniques for analyzing algorithms
• Asymptotic notation

• 1. O(F) defines the set of all functions f that increase no faster
than F, i. e. there exists a constant c > 0 such that f (n) <= cF
(n), for all sufficiently large values of n.

• 2. Theta (F) defines the set of all functions f that increase as
fast as F (with an allowance to a constant multiplier), i. e.
there exist constants c1 > 0 and c2 > 0 such that c1F(n) <= f (n)
<= c2F(n), for all sufficiently large values of n.

• 3. Omega (F) defines the set of all functions f that increase no
slower than F, i. e. there exists a constant c > 0 such that f (n)
>= cF (n), for all sufficiently large values of n.

Techniques for analyzing algorithms

The worst case The best casethe complexity of an
algorithm increases with
the growth rate of the
given function

Techniques for analyzing algorithms

• The complexity of an elementary operation is constant, i. e.
O(1). It is not easy to define what an elementary operation is.
Basically, an elementary operation is one that is executed in a
constant time, independent of the size of the data being
processed. Elementary operations in the general case are for
example assignment, addition, multiplication, etc.

• However, when working with hundred-digit numbers, it is not
a good idea to consider multiplication an elementary
operation. It is not good to consider trigonometric functions
(sine, cosine, etc.), exponent, logarithm as elementary
operations.

Techniques for analyzing algorithms

Sequence of operators

The time complexity of a sequence of operators is determined
by the complexity of the slower of them.

• Formally, if the operator s1 with complexity F1 is followed by
the operator s2 with complexity F2, we can write:

Techniques for analyzing algorithms

Composition of operators

• When nesting an operator in the scope of another operator,
the complexity is calculated as the product of their
complexities, i. e.

Techniques for analyzing algorithms

if-constructions

• If the complexities of p, s1 and s2 are O(P), O(F1), O(F2), then
the complexity of the fragment shown is max(O(P), O(F1),
O(F2)), i. e. , the complexity of the fastest growing function
among P, F1 and F2.

Techniques for analyzing algorithms
Loops

Let's look at the loop:

• We can consider that the body of the loop takes a constant time c
independent of n.

• The complexity of the for loop operator is O(n). Then by the
composition rule for the complexity of the whole loop we get O(c.
n), i. e. O(n).

• Here we should add the complexity of the initial initialization
before the loop (which has complexity O(1)), where, by the
consistency rule, we get: O(1+n). At the end, the complexity turns
out to be O(n).

Techniques for analyzing algorithms

Nested loops

• The complexity of two or more nested loops with mutually
independent counters can be easily derived. In the case of
two nested loops from the fragment above, it is f ∈ n. O(g),
where g is the complexity of the inner loop. But g ∈ O(n),
then f ∈ O(n. n), i. e. f ∈ O(n2).

Techniques for analyzing algorithms

Example

• The if operator will execute n2 times, but only n times the
result of the i == j check will be true. Since the complexity of
the innermost loop is linear, we obtain a total complexity of
O(n2).

Techniques for analyzing algorithms

Logarithmic complexity

Let's look at the program fragment:

• Here h takes values 1,2,4,. . . , 2k,. . . until it reaches n. Thus
sum++ is executed log2 n times and the complexity of the
algorithm is O(log2 n).

• Such algorithmic complexity has a binary search as well,
where at each step the search interval is divided into two
(almost) equal parts.

Techniques for analyzing algorithms
Recursion

• Analyzing recursion in the general case is not trivial. Typically,
a dependence of the form T(n) = f(T(n–1)) is obtained for the
complexity of the algorithm.

- Factorial

Consider the function:

In this case the recursion is equivalent to a single loop of
type for, where for the complexity we easily get O(n).

Techniques for analyzing algorithms
Recursion

- Fibonacci numbers

However, things are not always so simple. Take Fibonacci
numbers for example, which can be found extremely
inefficiently with recursion:

For n = 0 and n = 1, we have constant time complexity: one
elementary check and return a result. In the other case we have
the same check again, but this time followed by two recursive
conversions.

Techniques for analyzing algorithms

Recursion

- Fibonacci numbers

In general, the following formulas are valid:

Techniques for analyzing algorithms
Recursion

- Fibonacci numbers

However, if we are smart enough not to recompute something
we have already computed, we can reduce the complexity of the
algorithm to O(n):

Typical complexities of algorithms

Complexity Sign Description

constant O(1) A constant number of steps (say 1, 5, 10, or some other

number) is required to perform an operation, and this

number is independent of the input data volume.

logarithmic O(log(N)) To perform an operation on N elements requires a number

of steps of the order of log(N), where the base of the

logarithm is usually 2. For example, an algorithm with

complexity O(log(N)) for N = 1,000,000 will take about 20

steps (to constant precision).

linear O(N) To perform an operation on N elements requires

approximately as many steps as there are elements.

Approximately 1,000 steps are needed for 1,000 items.

The number of elements and the number of operations

are linearly dependent, for example the number of steps is

about N/2 or 3*N for N elements.

Log-Linear O(n*log(n)) It takes approximately N*log(N) steps to perform an

operation on N elements. Approximately 10,000 steps are

needed for 1,000 elements.

Typical complexities of algorithms

Complexity Sign Description

quadratic O(n2) An operation requires N2 number of steps, where N

characterizes the input data volume. For example, an

operation on 100 items requires 10,000 steps. If the

number of steps is quadratic in the input data volume,

then the complexity is quadratic.

cubic O(n3) An operation requires N3 steps, where N characterizes the

amount of input data. For example for a 100 elements

approximately 1 000 000 steps are executed.

exponential O(2n), O(N!),

O(nk),…

To perform an operation or computation, a number of

steps is required that is exponentially related to the size of

the input data. For example, at N=10 the exponential

function 2N has a value of 1024, at N=20 it has a value of

1 048 576, and at N=100 the function has a value that is a

number of about 30 digits.

Special techniques for analysis of
algorithms

Using a barometer

Consider again the following program fragment:

Above we defined its complexity using properties of sums. We
can approach it another way: we choose an appropriate instruction
(barometer) and watch how many times it is executed.

This vacates us of the concern of analyzing all other
instructions that are not relevant to the chosen one. How to choose
the barometer?

Special techniques for analysis of
algorithms

Using a barometer

Consider again the following program fragment:

This should be an instruction that is executed at least as
often as any other instruction in the program.

In the above program fragment, a suitable candidate for
this is sum++. By the way, the value of the sum variable after the
fragment is executed will give us the number of executions of
the sum++ instruction.

Special techniques for analysis of
algorithms

• When analyzing computer algorithms, we most often study their
behavior in the worst or average case and almost never care how
they behave in the best case.

• A commonly used technique in analyzing an algorithm to
determine its worst-case complexity is to assume that the worst
possible outcome occurs at each step.

• This gives us a correct complexity of O(. . .), but does not always
give us a correct estimation: the results are often quite pessimistic,
and in practice the algorithm runs much faster even in the worst
case.

• The reason is that the worst case may not always occur at each
step. Thus, the overall complexity may turn out to be significantly
better than predicted.

Special techniques for analysis of
algorithms

• Although they give us the opportunity to put the complexity
estimation of algorithms and programs on a sound
theoretical footing, we should be somewhat suspicious of
asymptotic estimates.

• Their main characteristic is that they are interested in the
behavior of the algorithm under infinite growth of n.
However, there are no infinitely large numbers in the real
computing world.

• This means that the estimate given by the asymptotic
function may be inadequate: for example, because it hides
the constants, or because we are not interested in such large
values of n.

Questions and exercises:

1. What is complexity of algorithms?

2. What is time complexity?

3. What is space complexity?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 3. Algorithms and their applications in

databases for query optimization

❑ Topic 2. Strategies in Algorithm Design

❑ Lesson 1. Divide and Conquer Paradigm in Algorithms

DIVIDE AND CONQUER PARADIGM IN

ALGORITHMS

Cormen, Thomas H.; Leiserson, Charles E., Rivest, Ronald L., Stein, Clifford (2009).
Introduction to Algorithms (3rd ed.). MIT Press and McGraw-Hill.

https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein

History
• The roots of the idea of dividing a complex task into several

simpler ones, which are easier to attack separately and
whose solution allows easy construction of a solution to the
initial task, lie far back in antiquity.

• It reached its peak under the Roman Empire, which
formulated and promoted “Divide and conquer" as the
basic principle of its foreign policy towards the Empire's
neighbouring warring tribes.

• The idea of the divide-and-conquer algorithm is to
sequentially (usually by recursion) break a problem into
two or more subproblems until they become small enough
to be easily solved.

Paradigm of design divide and conquer

1. Division of the problem (task) into subproblems
(subtasks).

2. Solve the small subproblems of the problem recursively.

3. Obtain a solution at the original (larger instance) by
combining these solutions at the smaller instances.

Divide and Conquer algorithm

• Divide and Conquer algorithm

Examples of divide and conquer

Typical examples of divide and conquer algorithms are:

• The sorting algorithms: merge sort and quick sort;

• Binary search tree;

• Raising a number to a power;

• Fibonacci numbers;

• Matrix multiplication: the Strassen algorithm.

• Divide‐and‐conquer method can be used for Big Data
Analysis.

Divide and conquer

Merge sort:

1. Divide: trivial

2. Conquer: recursive sorting of the two subarrays

3. Combine: merge the two sorted subarrays in linear
time.

Divide and conquer

Merge sort:

Step by step example

An example of how merge sort sorts a row.

Divide and conquer

Merge sort – Basic theorem:

Divide and conquer

Merge sort

Divide and conquer

Binary search:

Search for an element in a sorted array:

1. Divide: checking the middle element

2. Conquer: recursive search in 1 subarray

3. Combine: trivial

Divide and conquer
Binary search:

Example: searching for 9:

Divide and conquer

Binary search:

Divide and conquer

Binary search:

Divide and conquer

Raising a number to a power:

Проблем: calculating where

Naïve algorithm:
temp=power(base,expo/2)?

Divide and conquer algorithm:

if is an even number

if is an odd number

Divide and conquer

Fibonacci numbers:

Recursive definition:

Naïve recursive algorithm:

(exponential time), where

is the golden ratio.

Divide and conquer
The Golden Ratio (also known as the Golden proportion, Golden

coefficient, or Divine proportion) is an the ratio of the length of

the longer part, say "a" to the length of the shorter part, say "b" is

equal to the ratio of their sum " (a + b)" to the longer length. It is

denoted by the Greek letter φ and has a value approximately

equal to 1. 618. . .

The ratio of each Fibonacci number
to the previous one tends to 1. 61803.
. . . The number 1. 61803. . . is a
"golden ratio". It is denoted by the
capital Greek letter φ (phi).

The golden ratio search is a divide
and conquer technique successfully
applied to search for an element in a
sorted array.

Divide and conquer

Calculation of Fibonacci numbers:

From the bottom upwards:

We calculate in a line forming each value by
summing the previous two values.

Duration:

Divide and conquer

Calculation of Fibonacci numbers:

Divide and conquer
Matrix multiplication:

Divide and conquer

Matrix multiplication:

Standard algorithm Improving the efficiency of algorithms, especially
those in bioinformatics, can have a widespread
impact. Matrix multiplication is one such problem,
occurring in bioinformatics often.

Divide and conquer

Matrix multiplication:

Divide and conquer algorithm

Idea:

Divide and conquer
Matrix multiplication:

Divide and conquer algorithm

Idea:

Divide and conquer

Matrix multiplication:

Divide and conquer algorithm

No better than a simple algorithm.

Divide and conquer

Matrix multiplication:

Divide and conquer algorithm, Strassen Algorithm

Divide and conquer

Matrix multiplication:

Divide and conquer algorithm, Strassen Algorithm

Divide and conquer
Matrix multiplication:

Strassen algorithm

1. Divide: dividing and to submatrices
Part of the multiplication can be replaced by + and -.

2. Conquer: performing 7 multiplications of
submatrices.

3. Combine: for we use + and – of submatrices

Divide and conquer

Matrix multiplication:

Strassen algorithm

Strassen's algorithm is an algorithm used in linear algebra for
fast matrix multiplication. For large matrices it is faster than the
classic one. It was discovered in the late 1960s by the German
mathematician Volker Strassen.

For multiplication of two matrices of size N x N, the computation
of the resulting matrix is Θ(n3). Strassen managed to improve it
to Θ(nlog7).

Divide and conquer
Tower of Hanoi Task
There are n number of disks of different diameters and three pillars A, B
and C. The disks are strung on the first pillar in order of decreasing size
and form a tower

They must be transferred from the first pillar to the last, subject to the
following rules:
1. On each move, one disc can be moved, and this disc must be the top
one for one of the pillars.
2. A disc with a larger diameter cannot be placed on one with a smaller
diameter.

Divide and conquer

Tower of Hanoi Task

• The idea is that to move n number of disks from pillar A to
pillar C, we need to move n–1 disks from pillar A to pillar B,
then move the disk number n (which is the largest among
them) from pillar A to pillar C and finally move the remaining
n–1 disks from pillar B to pillar C.

• Thus, we naturally reduced the task to solving two other
instances of it of smaller size (divide), whose union, together
with an additional operation (transfer to the largest disk) gives
us the solution we are looking for (conquer).

Divide and conquer

Tower of Hanoi Task:

• Example with 3 discs

+

1 subproblem

2 subproblem

Divide and conquer
Tower of Hanoi Task:

• Watch how a tower of Hanoi of 4 discs is being solved

Video demonstration:

Divide and conquer

Conclusion:

❑Divide and conquer is just one of several powerful

algorithm design techniques.

❑Divide and conquer algorithms can be analyzed using

iterations.

❑The divide-and-conquer strategy often leads to efficient

algorithms.

Questions and exercises:

1. What is the divide and rule strategy ?

2. Can you specify sorting algorithm which using
the split and conquer strategy?

3. Can you specify some other popular problems
solved by divide and conquer ?

Thank you for your
attention !

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 3. Algorithms and their applications in

databases for query optimization

❑ Topic 2. Strategies in Algorithm Design

❑ Lesson 2. Dynamic programming

DYNAMIC PROGRAMMING

Cormen, Thomas H.; Leiserson, Charles E., Rivest,
Ronald L., Stein, Clifford (2009)

[1990]. Introduction to Algorithms (3rd ed.). MIT
Press and McGraw-Hill.

Preslav Nakov, Panayot Dobrikov
(2002). Programming = ++Algorithms). Top Team

Co, София.

https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein

Dynamic Programming

• Dynamic programming DP (optimization, DO), like the
divide-and-conquer method, solves problems (task) by
combining solutions to subproblems. ("Programming" in
this context refers to a tabular method, not written
computer code).

• As we saw in the “Divide and Conquer” lecture, these
algorithms divide the problem (task) into unconnected
subproblems, solve the subproblems recursively, and
then combine their solutions to solve the original
problem.

Dynamic Programming

• In contrast, dynamic programming is applied when
subproblems overlap, that is, when subproblems share
sub-subproblems.

• In this context, a divide-and-conquer algorithm, does
more work than necessary, repeatedly solves common
subproblems.

• A dynamic programming algorithm solves each
subproblem only once and then records its answer in the
form of a table, thus avoiding the work of recalculating
the answer each time when solving each subproblem.

Dynamic Programming

• We typically use dynamic programming for optimization
problems. Such problems may have many possible
solutions. Every solution has a value, and we want to find
the solution with the optimal (minimum or maximum)
value.

• We call such a solution an "optimal solution to the
problem" rather than an "optimal solution", because
there may be several solutions for which an optimal
value can be achieved.

Dynamic Programming

• When developing a dynamic programming algorithm, we
follow a four-step sequence:

1. Characterize the structure of an optimal solution.

2. Recursively define the value of an optimal solution.

3. Compute the value of an optimal solution, typically in a
bottom-up model.

4. Construct an optimal solution from computed
information.

Dynamic Programming

• Steps 1-3 are the basis of dynamic programming to solve
a problem.

• If we are only interested in the value of an optimal
solution and not the solution itself, then we can skip step
4.

• Definition. The programming technique in which a table
is filled up with the results of solutions to subproblems
already solved to avoid repeated computations is called
dynamic programming.

Dynamic Programming

• Dynamic programming is based on solving subproblems
of the initial problem with a smaller size and safe the
already computed results, i. e. speed is gained at the
expense of memory.

• In some cases a constant memory is needed (Fibonacci
numbers), while in other cases the memory needed can
be linear (Knapsack problem), quadratic (optimal matrix
multiplication problem), and sometimes even larger.

Dynamic Programming

• It should also be noted that dynamic programming is not
always applicable.

• On the one hand, the solution of the initial problem
cannot always be obtained by combining the results of
solving some or all of its subproblems.

• On the other hand, even when such a combination is
possible, the number of subtasks to be considered may
be unacceptably large.

• To this it should be added the lack of a clear criterion
characterizing the problems that can be solved using the
described method.

Dynamic Programming
• It turns out that for a number of tasks, standard

algorithms turn out to be far more efficient than dynamic
programming, and for others – this method is not
applicable at all.

• There are two necessary conditions for the method
application: optimal solution substructure and
overlapping subproblems.

- The optimal solution substructure means that the optimal
solution of the initial problem can be found as a function of
the optimal solutions of the subproblems. This leads to a
strong limitation of the set of subtasks, hence to a higher
efficiency of the method.

Dynamic Programming

– The second necessary condition for the application of
dynamic programming is overlapping the subtasks.
Dynamic programming is able to make clever use of
overlapping subproblems, computing the solution to
each subproblem only once, thus severely limiting the
actual number of subproblems solved.

• The less often a new subproblem actually needs to be
solved, the more efficient the method is. The lack of
overlap of subtasks is a sure indicator that the
application of dynamic programming is inappropriate. In
such a case, it is better to try the divide and conquer
method.

Dynamic Programming

• Often the objects considered in solving a problem are
sets with partial or complete linear ordering of the
elements.

• Examples of such objects are strings, various
combinatorial configurations (permutations,
combinations, etc.), leaves of ordered search trees,
points on a line, vertices of a polygon, etc.

• In these cases, dynamic programming usually results in
an efficient algorithm.

Dynamic Programming

• Typically, in dynamic programming, problems are solved
iteratively from the bottom-up, i. e. , trivial subproblems
(those that are solved directly without further
decomposition) are considered first, then those larger
subproblems for which all subproblems have already
been solved, and so on.

• The main disadvantage of this approach is that it requires
solving all subproblems of a size smaller than that of the
initial problem, which leads to redundant computations,
because in the process of computation it may turn out
that some of the subproblems are not needed.

Dynamic Programming
• Dynamic programming is a good method for optimizing

join queries in relational database management
systems, and virtually all commercial optimizers rely on
dynamic programming for this purpose.

• Dynamic programming is often underestimated, or more
accurately - undervalued. Some programmers consider it
complicated and messy.

• In fact, it is one of the simplest yet effective algorithmic
techniques.

• Since such knowledge is most easily learned on the basis
of concrete examples, we will consider a classic example.

Knapsack problemKnapsack problem

• This is one of the most famous problems in the world of
dynamic programming, solved efficiently using the
method.

• The knapsack problem appears in the literature in many
different formulations, suggesting different solutions.

• In its most popular version (the 0-1 knapsack problem), it
is a classic example of a problem that is solved with
dynamic programming.

• This is one of the most famous problems in the world of
dynamic programming, solved efficiently using the
method.

• The knapsack problem appears in the literature in many
different formulations, suggesting different solutions.

• In its most popular version (the 0-1 knapsack problem), it
is a classic example of a problem that is solved with
dynamic programming.

Knapsack problem

Knapsack problem

Knapsack problem

Judging from the above recurrent formula, we can implement a function to

calculate F. We will point out that this way we can choose one and the same item multiple

times. That’s why for each F(i) we will maintain set [i], containing the concrete items which

taking leads to this maximum value. Except let us find a concrete set of items that forms the

maximum value of the target function set [i] will prevent us from including one and same

item again..

A possible approach is to calculate the function value recursively and in order to

avoid repeated calculations to use a table (memorization). The table of already calculated

values will contain the value of the target function if it has already been calculated or a

special value NOT_CALCULATED – otherwise. Every time we need the value of F(i) for

some i = 1, 2, … N, we will first check whether Fn[i] (saved table value) is different than

NOT_CALCULATED in which case we’re taking the value Fn[i] from the table. We will

set the program input data in its code as constants. The main job is done by the recursive

function F () which calculates the values of the target function.

It is done by the function calculate () which checks whether the capacity of the knapsack

enables taking all item, and only if it is not like this, turns to F ().

Knapsack problem

Example with 7 items and knapsack with a capacity 19.

Knapsack problem
http://karaffeltut.com/NEWKaraffeltutCom/Knapsack/knapsack.html

Online calculator with which you can test different examples:
https://knapsack.masao.io/

http://karaffeltut.com/NEWKaraffeltutCom/Knapsack/knapsack.html
http://karaffeltut.com/NEWKaraffeltutCom/Knapsack/knapsack.html
https://knapsack.masao.io/

Fibonacci numbers
• Calculation with recursive function:

• Too much calculations:

Fibonacci numbers

• The computation of the Fibonacci numbers can be arranged
so that linear time by n is needed, by storing all the
computed values in an array F[i]:

• This program fragment illustrates the basic idea - how one
can compute Fibonacci numbers sequentially from smaller
to larger and at the same time keep the previous results so
that when we need to compute Fn, we already have Fn- i and
Fn-2 computed and can use them.

Fibonacci numbers

• We can immediately notice that we do not need to save
all the numbers calculated up to the current moment to
calculate Fn..

• It is sufficient to have only the two previous values
available. This can be done without using an array, but
just two variables, and swapping their values
appropriately:

Fibonacci numbers

• If the value of f(n) has already been computed and stored in a
solution table, then it can be taken from there instead of
computing it again. This means that there are removed
specimens in the subtrees of the calculations.

Fibonacci: Top-Down vs Bottom-Up Dynamic
Programming

• The Recursive Approach:
– To compute F(N) in the recursive approach, we first try to find the

solutions to F(N-1) and F(N-2). But to find F(N-1), we need to find F(N-2)
and F(N-3). This continues until we reach the base cases: F(1) and F(0).

Fibonacci: Top-Down vs Bottom-Up Dynamic
Programming

• The Top-Down Approach:
– The idea here is similar to the recursive approach, but the difference is

that we’ll save the solutions to subproblems we encounter. This way, if
we run into the same subproblem more than once, we can use our saved
solution instead of having to recalculate it. This allows us to compute
each subproblem exactly one time.

Fibonacci: Top-Down vs Bottom-Up Dynamic
Programming

• The Bottom-Up Approach:
– In the bottom-up dynamic programming approach, we’ll reorganize the

order in which we solve the subproblems. We’ll compute F(0), then F(1),
then F(2), and so on:

– This will allow us to compute the solution to each problem only once,
and we’ll only need to save two intermediate results at a time.

– For example, when we’re trying to find F(2), we only need to have the
solutions to F(1) and F(0) available. Similarly, for F(3), we only need to
have the solutions to F(2) and F(1).

Questions and exercises:

1. What is the DO strategy ?

2. What is memorization approach in DP ?

3. Can you specify some other popular problems
solved by DO?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 3. Algorithms and their applications in

databases for query optimization

❑ Topic 2. Strategies in Algorithm Design

❑ Lesson 3. Heuristic and probability algorithms

HEURISTIC AND PROBABILISTIC

(RANDOMIZED) ALGORITHMS

Cormen, Thomas H.; Leiserson, Charles E., Rivest,
Ronald L., Stein, Clifford (2009)

[1990]. Introduction to Algorithms (3rd ed.). MIT
Press and McGraw-Hill.

Preslav Nakov, Panayot Dobrikov (2002).
Programming = ++Algorithms). Top Team Co, Sofia.

https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein

Heuristic and probabilistic algorithms
• Heuristics (from Ancient Greek) - find, discover, refers to methods

of solving problems, learning or drawing conclusions based on

experience.

• These methods are not guaranteed to be optimal, they are just a way

to reach a conclusion in a faster way and to reduce complexity.

• Heuristic methods are used to speed up the process of finding a good

solution where a detailed study is impractical.

• Examples of this method include the use of assumption, based on

knowledge, intuitive reasoning.

Heuristic and probabilistic algorithms
• In computer science, a heuristic or heuristic method is a

method for solving logical or mathematical problems for

which there is no algorithm. The method involves a stepwise

narrowing of the solution-finding domain through inductive

reasoning based on experience.

• Hill climbing is a type of local search algorithm. The basic

idea is to find a point in a given space that is better than all

others for a given evaluation function. This is also the key

heuristic used. The initial state is chosen randomly as a point

in the search space. All its neighboring states are generated.

On the basis of the evaluation function, the point for which

the function value is the largest (or smallest, depending on

the problem) is selected.

Heuristic and probabilistic algorithms

Heuristic and probabilistic algorithms

The algorithm ends when we reach the
predefined conditions or when we cannot find
further improvements

Heuristic and probabilistic algorithms

• To find an approximate solution, one random initial solution is generated,
then successive iterations produce more accurate solutions than the
previous ones.

• The design and analysis of probabilistic algorithms are focused on working
independently of what we have as input, and depend on the arbitrary
choices made by the algorithm during its run.

A probabilistic algorithm is one that makes random choices during its
execution. The operation of such an algorithm can be random, even with
fixed input.

Heuristic (approximate) algorithms are algorithms whose main task is
to find not an optimal but an approximate solution under memory or
time constraints. Examples of such algorithms are local search, tabu
search, a class of heuristic algorithms called greedy algorithms, etc.

Heuristic and probabilistic algorithms

• Suppose you need to hire a new office assistant. Your previous
attempts to recruit haven’t been successful, and you have
decided to use an employment agency.

• The employment agency sends you one candidate every day.

• You can conduct an interview and then decide whether to hire
that person or not. You must pay the employment agency a
small fee to interview the candidate.

• However, you must dismiss your current assistant and you
must pay a substantial fee to the employment agency.

• You commit to have the best office assistant possible at all
times.

Heuristic and probabilistic algorithms
• Therefore, you should decide that after interviewing each

candidate, if that candidate is better qualified than the current
office assistant, to dismiss the current office assistant and hire the
new assistant.

• You are willing to pay the necessary price for this strategy, but you
want to evaluate how much it will cost you.

Pseudo-code of the hiring procedure:

Heuristic and probabilistic algorithms

Pseudo-code of the hiring procedure with random
changing the positions of the elements in the array:

(In this case we will have a random permutation of the list of
candidates)

Greedy algorithms

• In most of the problems, the optimal among the possible
solutions is sought.

• In many cases, to find the optimal solution, it is necessary
to find the solutions of all subcases of the problem (not
necessarily optimal).

• A major disadvantage is that some of them are possibly
recalculated multiple times.

• Repeatedly computing the same subcases can be avoided
by applying dynamic optimization, but unfortunately the
latter involves the need for sufficient memory to store the
results.

Greedy algorithms

• The idea behind heuristic algorithms is the following: the
heuristic algorithm targets one of all subcases of the
problem and solves only that one, in the "hope" that it will
turn out to be the correct one.

• The selection of this sub-case is based on a local optimality
criterion.

• For example, greedy algorithms, as the name suggests,
always focus on the best choice for the moment, looking
locally, and quite naturally, at a later stage, it may turn out
that this choice was not the best one, looking globally.

Greedy algorithms
• Greedy algorithms are easy to compose, the corresponding

implementation of the algorithm is not complicated, and
the only disadvantage is that sometimes they do not
guarantee the correct solution of the problem.

• However, the above does not diminish their usefulness - it
is characteristic of heuristic algorithms (and greedy ones in
particular) that they quickly manage to find a solution
close to optimal.

• In many practical tasks, it is impossible to explore all cases,
and often formulating an algorithm that finds a solution 5%
worse than the optimal solution is considered a success,
compared to the alternative of an almost infinite and
unpromising search for the "true" optimal solution.

Greedy algorithms
• The first problem we will consider is the following: find a way to obtain a given sum

m (m is a natural number), using a minimum number of banknotes, with
denominations from the set C = {a1, a2, ..., an}. For example, the banknotes are 1, 2,
5, 10, 20, 50 leva.

• Consider the following algorithm:

1) We initialize s=0

2) We find the banknote i with a maximum value ai (aiєC), so that s+ai≤m.

2.1) If there isn’t a banknote for which s+ai≤m it follows that the problem has no
solution. End.

2.2) Otherwise we take the banknote i and increase s by ai .

2.2.1) If s=m it follows that the problem is solved. End.

2.2.2) If s<m than we still haven’t obtained the whole sum and repeat step 2).

• For example, for the sum of 298 leva, five 50 leva notes, two 20 leva notes, one 5
leva note and one two and one leva note will be chosen in turn (total 250 + 40 + 5 +
2 + 1 = 298).

Greedy algorithms

• Obviously, the described algorithm satisfies the criteria of a
greedy algorithm: at each step it selects the maximum
higher-valued banknote, thus aiming to achieve the
searched amount as fast as possible.

• In this particular example, it leads to an efficient solution
to the problem.

• For example, consider the case where the possible values
for notes are 2, 5, 20 and 30 and we want to get a sum of
40.

• The greedy algorithm first will select a note of 30 (the
maximum possible), then select two notes of 5, i. e. 3 notes
in total.

Greedy algorithms

• Obviously, however, there is a better solution: two 20
notes.

• In addition to not finding the optimal solution, it is possible
that the greedy algorithm may not find a solution at all.

• So, for example, if we want to get a sum of 6: after the note
with value 5, the algorithm is left with no further choices
(and the sum can still be obtained from 3 notes with value
2).

• However, things are not always so bad and there are a
number of problems where it can be shown that the greedy
algorithm always finds a solution.

Greedy algorithms

Magnetic tape task

There are n programs of lengths l1, l2, ... , ln and a magnetic
stripe with sequential access.

• Sequential access means that in order to read a record
located at a given position on the tape, you must pass
(scroll the tape) to the specified location.

• For example, in order to read the third program (of length
l2), all programs before it - those of length l1 and l3 - must be
"scrolled".

Greedy algorithms

Magnetic tape task

Genetic algorithms

• Genetic algorithms are a search-and-find method in which the
basic idea is to simulate genetic and evolutionary processes in
nature.

• Thus, for a given optimization problem, several random
suboptimal solutions are initially constructed.

• The most successful ones are kept and new ones are built on
their basis in the hope that they will be even better. In this way,
suboptimal and unpromising solutions are isolated from further
consideration.

Genetic algorithms

• The analogy with the process of evolution of species is obvious
- in nature this phrase is known as "survival of the fittest".

• Genetic algorithms are part of evolutionary programming,
which is the rapidly growing field of artificial intelligence.

• The algorithm is run with a set of solutions (represented by
chromosomes) called a population. Decisions from one
population are taken and used by the new population.

Genetic algorithms

• This is justified by the hope that the new population will be
better than the old.

• The solutions that are chosen to form the new population
(generation) are selected according to their viability - the more
suitable ones have a greater chance of reproduction.

• This is repeated until some condition (e. g. the number of
populations or proving the best solution) is satisfied.

Genetic algorithms can be applied to a large class of problems,
but a major disadvantage of the approach is the lack of

theoretical evaluations guaranteeing good solutions.

Genetic algorithms
Sketching the Genetic Algorithm

1. [Start] Generating a random population of n chromosomes (suitable problem solutions)

2. [Viability] Calculating the viability f(x) of each chromosome n in population

3. [New population] Creating a new population through repeating the following steps until the new
population is finished

1. [Selection] Selecting two parents chromosomes from the population according to their
viability (better viability better selection chances)

2. [Crossbreeding] By crossbreeding probably cross the parents to form the new generation
(children). If no crossbreeding, the generation would be an exact copy of its parents.

3. [Mutation] By mutation, probably the new generation is mutated at some place (place in the
chromosome)

4. [Accepting] Place the new generation in the new population

4. [Replacement] Using the new-generated population for further execution of the algorithm

5. [Check] If the final condition is satisfied, stop, and returning the best solution of current
population.

6. [Cycle] Go to step 2

Slide 15- 23

Using Heuristics in Query Optimization

• Process for heuristics optimization
1. The parser of a high-level query generates an initial internal

representation;

2. Apply heuristics rules to optimize the internal representation.

3. A query execution plan is generated to execute groups of
operations based on the access paths available on the files
involved in the query.

• The main heuristic is to apply first the operations that reduce
the size of intermediate results.
– E.g., Apply SELECT and PROJECT operations before applying

the JOIN or other binary operations.

Slide 15- 24

Using Heuristics in Query Optimization

• Query tree:
– A tree data structure that corresponds to a relational algebra

expression. It represents the input relations of the query as leaf
nodes of the tree, and represents the relational algebra
operations as internal nodes.

• An execution of the query tree consists of executing an
internal node operation whenever its operands are available
and then replacing that internal node by the relation that
results from executing the operation.

• Query graph:
– A graph data structure that corresponds to a relational calculus

expression. It does not indicate an order on which operations to
perform first. There is only a single graph corresponding to each
query.

Questions and exercises:

1. Are heuristic algorithms exact algorithms?

2. When is it practical to use heuristic
algorithms ?

3. What is the randomized algorithm ?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 3. Algorithms and their applications in

databases for query optimization

❑ Topic 2. Strategies in Algorithm Design

❑ Lesson 4. Greedy algorithms. Examples.

GREEDY ALGORITHMS. EXAMPLES.

Carmen, Thomas H.; Leiserson, Charles E., Rivest,
Ronald L., Stein, Clifford (2009)

[1990]. Introduction to Algorithms (3rd ed.). MIT
Press and McGraw-Hill.

Preslav Nakov, Panayot Dobrikov
(2002). Programming= ++Algorithms). Top Team

Co, София.

https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein

Greedy Algorithms

• Algorithms for optimization problems typically go
through a series of steps, with a set of choices at each
step.

• For many optimization problems, using dynamic
programming to determine the best choice is
unnecessary (too powerful weapon); simpler, more
efficient algorithms can do this.

• A greedy algorithm always makes the choice that seems
best at the time.

• That is, it makes a local optimal choice in the hope that
this choice will lead to a global optimal solution.

Greedy Algorithms

• Greedy algorithms do not always give optimal solutions,
but for many problems they do find such a solution.

• In general, the greedy method is quite powerful and
works well for a wide range of problems.

• Later (in the next lectures) we will present many
algorithms where we may see applications of the greedy
method including minimum covering trees, Djextra
shortest path algorithm, etc.

• Algorithms for finding the maximum spanning tree
represent a classic example of a greedy algorithm.

Greedy Algorithms
The cover tree

Greedy Algorithms
• Greedy algorithms are easy to compose, the corresponding

implementation of the algorithm is not complicated, and the
only disadvantage is that sometimes they do not guarantee
the correct solution of the problem.

• However, it does not diminish their usefulness - it is
characteristic of heuristic algorithms (and greedy ones in
particular) that they quickly manage to find a near-optimal
solution.

• In many practical problems, it is impossible to explore all
cases, and often composing an algorithm that finds a solution
5% worse than the optimal solution is considered a success,
compared to the alternative of an almost endless and
unpromising search for the "true" optimal solution.

Greedy Algorithms
• The first problem we will consider is the following: find a way to obtain a given

sum m (m is a natural number), using a minimum number of banknotes, with
denominations from the set C = {a1, a2, ..., an}. For example, the banknotes are 1,
2, 5, 10, 20, 50 leva.

• Consider the following algorithm:

1) Initialize s=0

2) Find the banknote i with a maximum value ai (aiєc) so that s+ai≤m.

2.1) If there is not a banknote for which s+ai≤m the problem has no
solution. The end.

2.2) Otherwise we take the banknote i and increase s with ai.

2.2.1) If s=m the problem is solved. The end.

2.2.2) If s<m than we still haven’t obtained the total sum and
repeat step 2).

• For example, for the sum of 298 leva, will be chosen sequentially five 50 leva
notes, two 20 leva notes, one 5 leva note and one 2 leva note and one 1 leva note
(total 250 + 40 + 5 + 2 + 1 = 298).

Greedy Algorithms

• Obviously, the described algorithm satisfies the criteria of
a greedy algorithm: at each step, it selects the maximum-
valued banknote, thus aiming to achieve the searched
amount as fast as possible. In this particular example, it
leads to an efficient solution of the problem.

• For example, consider the case where the possible values
for notes are 2, 5, 20 and 30 and we want to get an
amount of 40.

• The greedy algorithm will first select a note of 30 (the
maximum possible), then select two notes of 5, i. e. 3
notes in total.

Greedy Algorithms
• Obviously, however, there is a better solution: two 20

notes.

• In addition to not finding the optimal solution, it is
possible that the greedy algorithm may not find a
solution at all.

• So, for example, if we want to get a sum of 6: after the
note with a value 5, the algorithm is left with no further
choices (and the sum can still be obtained from 3 notes
with a value 2).

• However, things are not always so bad and there are a
number of problems where it can be shown that the
greedy algorithm always finds a solution.

Greedy Algorithms
Magnetic stripe problem

Given n programs of lengths l1, l2, ... , ln and a magnetic
stripe with a sequential access.

• Sequential access means that in order to read a record
located at a given position on the stripe, you must pass
(scroll the stripe) to the specified location.

• For example, in order to read the third program (of
length l2), all programs before it - those of length l1 and l3
- must be "scrolled".

Greedy Algorithms
Magnetic stripe problem

Greedy Algorithms

Maximum combination of activities

Problem: Given n lectures to be taught (activities to be
performed). Each lecture i is defined by two numbers: a
fixed start si and a fixed end fi.

The numbers si and fi can denote the start and end time for
the lecture - we can consider them to be natural numbers.

A maximum number of lectures should be chosen so that
no two of the chosen lectures are given at the same time, i.
e., assuming that we have only one lecture hall, then at any
time t at most one lecture can be given in the hall

i (si ≤ t ≤ fi, 1 ≤ i ≤ n).

Greedy Algorithms

Maximum combination of activities

The problem is a classic example of an efficient and
correctly working greedy algorithm . Lectures numbered 1
and 4 do not intersect in time, while 1 and 2, 2 and 3, etc.
intersect (i. e. cannot be held simultaneously).

Greedy Algorithms

Maximum combination of activities

Algorithm 1:

we construct an oriented graph G(V, E) with n vertices in which
every two “non-intersecting” lectures i, j (fi < sj) corresponds to an
edge (i, j) of the graph. If we find the longest path in G we get an
algorithm with complexity Ɵ(n2).

Greedy Algorithms
Maximum combination of activities

Algorithm 2:

It is possible to solve the problem without constructing a
graph by using dynamic programming. We define a target function F,
maximizing the number of the lectures chosen for time from 0 to t
the following way:

F(t) = 0, if no lecture i exits for which fi < t and

F(t) = max {F(si) + 1} otherwise

The solution is the value of function F(t0) for

Greedy Algorithms
Maximum combination of activities

Algorithm 3:

The problem can be solved simply and effective using greedy algorithm, where a complexity
Ɵ(n.log2n) is achieved without using additional memory. Complexity of greedy algorithm is even linear – the
problem is that we should have the lectures sorted in ascending order by fi. And because sorting in general
case is with complexity Ɵ(n.log2n) it defines the complexity of solution itself.

Algorithm:

We consider the lectures sequentially from first to last:

1) We choose lecture i for which fi is minimal (at the beginning always choose the first one because
lectures are sorted in ascending order by fi)

2) All lectures j for which sj≤fi (i.e. which “interfere” with the selected one) are excluded from the
lectures list. Step 1 is repeated and so until all lectures are taught.

Greedy Algorithms

Maximum combination of activities

Greedy Algorithms
Maximum combination of activities

Greedy Algorithms
Elements of the greedy strategy:

• A greedy algorithm obtains an optimal solution to a problem by
making a sequence of choices. At each decision point, the
algorithm makes choice that seems best at the moment. This
heuristic strategy does not always produce an optimal solution,
but as we saw in the activity-selection problem, sometimes it
does.

• More generally, we design greedy algorithms according to the
following sequence of steps:

1. Cast the optimization problem as one in which we make a choice and
are left with one subproblem to solve.

Greedy Algorithms
Elements of the greedy strategy:

• More generally, we design greedy algorithms according to the
following sequence of steps:

2. Prove that there is always an optimal solution to the original problem
that makes the greedy choice, so that the greedy choice is always safe.

3. Demonstrate optimal substructure by showing that, having made the
greedy choice, what remains is a subproblem with the property that if we
combine an optimal solution to the subproblem with the greedy choice
we have made, we arrive at an optimal solution to the original problem

• Every greedy algorithm, there is almost always a more
cumbersome dynamic-programming solution.

Greedy Algorithms
Greedy-choice property:

• The first key ingredient is the greedy-choice property: we can
assemble a globally optimal solution by making locally optimal
(greedy) choices.

• In other words, when we are considering which choice to
make, we make the choice that looks best in the current
problem, without considering results from subproblems.

Greedy Algorithms
Greedy-choice property:

• Here is where greedy algorithms differ from dynamic programming.
In dynamic programming, we make a choice at each step, but the
choice usually depends on the solutions to subproblems.

• Consequently, we typically solve dynamic-programming problems in
a bottom-up manner, progressing from smaller subproblems to
larger subproblems. (Alternatively, we can solve them top down, but
memorizing.

• Of course, even though the code works top down, we still must solve
the subproblems before making a choice.) In a greedy algorithm, we
make whatever choice seems best at the moment and then solve the
subproblem that remains.

Greedy Algorithms
Greedy-choice property:

• The choice made by a greedy algorithm may depend on choices so
far, but it cannot depend on any future choices or on the solutions to
subproblems.

• Thus, unlike dynamic programming, which solves the subproblems
before making the first choice, a greedy algorithm makes its first
choice before solving any subproblems.

• A dynamic programming algorithm proceeds bottom up, whereas a
greedy strategy usually progresses in a top-down fashion, making
one greedy choice after another, reducing each given problem
instance to a smaller one.

Greedy Algorithms
Summary:

❖Any algorithm that is implemented by selecting (locally) at each
step the maximum (or in some cases the minimum, depending
on what the algorithm wants to achieve) element of a given set
(i. e. the relation > in this set is introduced), "hoping" that this
will lead to the global maximum is called a Greedy algorithm. It
is this "take what you can get at the time" strategy that gives
the name to this class of algorithms.

❖They are simple and "one-way" - they make decisions based on
the information we have now without worrying about what will
happen in the future.

Greedy Algorithms
Summary:

❖ Greedy algorithms never review the decisions they make. This
distinguishes them from dynamic optimization, where the decision that is
made is based on all possible decisions made so far - so we are sure that
our algorithm outputs the optimal one.

❖ When running of the algorithm is finished, if the maximum we have
obtained matches the global maximum (i. e. the best solution) then our
algorithm is correct otherwise the greedy algorithm outputs an answer
very close to the optimal one.

❖ Greedy algorithms are easy to implement, unlike dynamic optimization
algorithms, and in most cases quite efficient. These properties make them
a good choice for solving competitive problems.

❖ Query optimizers can use a faster method called Greedy for determining
the order in which to join the tables referenced.

Questions and exercises:

1. What is a Greedy Algorithm ?

2. What Are Greedy Algorithms Used For ?

3. What is the difference between Dynamic
Programming and Greedy Algorithms ?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 3. Algorithms and their applications in

databases for query optimization

❑ Topic 3. Sorting algorithms

❑ Lesson 1. Sorting algorithms - part I (Sorting by insertion.
Sorting by direct selection. Bubble method).

Sorting Part I
Sorting algorithms. Insertion sort. Selection sort. Bubble

method.

Cormen, Thomas H.; Leiserson, Charles E., Rivest,
Ronald L., Stein, Clifford (2009)

[1990]. Introduction to Algorithms (3rd ed.). MIT
Press and McGraw-Hill.

Preslav Nakov, Panayot Dobrikov (2002).
Programming = ++Algorithms). Top Team Co, София.

https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein

Sorting

• Often, when working with large data of the same type, it
is necessary to introduce some kind of ordinance in order
to process them more easily.

• The ordering of the items could give us a significantly
more efficient search algorithm compared to the case
where the data is not ordered.

• It is customary to call the process of rearranging
(permuting appropriately) the elements of some set of
objects in a particular order a sorting.

Sorting
• Sorting is one of the primary algorithms used in

query processing. For example, whenever an SQL
query specifies an ORDER BY-clause, the query result
must be sorted.

• Sorting is also a key component in sort-merge
algorithms used for JOIN and other operations (such
as UNION and INTERSECTION), and in duplicate
elimination algorithms for the PROJECT operation
(when an SQL query specifies the DISTINCT option in
the SELECT clause).

Sorting

• The variety of algorithms is so great that Knuth devoted
the entire third volume (over 800 pages) of his famous
monograph “The Art of Computer Programming” to
sorting (and searching).

• Niklaus Wirth, the creator of the Pascal language, also
devotes quite a bit of attention to them in Algorithms +
Data Structures = Programs.

• The process of sorting the elements of a set, as already
mentioned above, generally comes down to rearranging
them. We will define the terms more strictly.

Sorting

• Let the set M be given with elements:

a1, a2, ..., an,

and a function f defined on them.

• By sorting the elements of M we mean permuting them
in the appropriate order :

so that is fulfilled.

• The function f is called a set ordering function.

Comparison sorting

• These are classical algorithms where the only allowed
operation is a comparison between pairs of elements
using the operations

Tree of comparisons for the set {a,b,c}

Comparison sorting

• This is probably the most elementary method of sorting
by comparison. It is based on a series of comparisons,
each of which brings us additional information.

• The process continues until the set is completely sorted.

• We may consider that any comparison of the form x < y
has two outcomes: yes if x is less than y, and no
otherwise.

• We’re going to illustrate the method on the three-
element set {a, b, c}.

Comparison sorting

• The above algorithm is beautiful and useful insofar as:

1) guarantees a minimum number of comparisons;

2) gives obviously the tree of comparisons (used to
prove minimum time complexity).

Comparison sorting

• Its advantages, unfortunately, end here.

• It is not hard to notice that the number of possible
outputs (leaves of the tree) is n!, as many as there are
possible permutations of the elements of the output set,
which, even with a sufficiently small number of elements,
is a rather large number, not allowing to write a relevant
program.

• Other more efficient sorting methods have to be sought.

Insertion sorting
• There are three classical elementary universal methods

for sorting by comparison: by insertion, by selection and
by the bubble method.

• Elementary sorting methods are effective for relatively
small numbers of items (about 20) and are often used in
practice.

• Unfortunately, with a larger number of elements, their
speed slows sharply, so other methods have to be used.

• Indeed, all three elementary methods are characterized
by an algorithmic complexity О(n2), which is much slower
compared to the complexity О(n.log2 n) characteristic of
modern sorting methods such as pyramidal or fast
sorting.

Insertion sorting
• Insertion sorting is the well-known method of ordering cards,

where the player, holding the cards in his left hand, removes
them one by one into his right hand and places them in their
correct position.

• Inserting the card in the correct position requires comparing it
more consistently (by eye) with the cards already stacked until
the correct position is found.

• How is the insertion done? One obvious algorithm is the
sequential comparison and eventual exchange of x with an
element to its left. The process continues until one of the
following situations occurs:

1) reaching an element with a key less than or equal to x;

2) reaching the first element of the array.

Insertion sorting

Insertion sorting

Insertion sorting

EXAMPLE: Insertion sort.

Sorting by direct selection method
• The idea of the method is as follows: the smallest element is

searched for, moved to the beginning of the array and
excluded from consideration.

• The operation is repeated until all n elements are selected.

Sorting by direct selection method

Sorting by direct selection method

BUBBLE SORT METHOD

It is recommended for a comparatively small n

We are sorting only in ascending row:

a0, a1, …, an-1

The method can be explained the following way:

1. Let right = n-1

2. For the row

a0, a1, …, aright

consistently compare any two adjacent elements ai and ai+1

If ai > ai+1, both elements exchange their places and the i
position of exchange is saved in the variable k.

BUBBLE SORT METHOD

If ai ≤ ai+1 the two elements do not exchange places.

The process continues until the end of the row. If in this
scanning after the exchange of elements from position i and
i+1 no other exchange is made, the elements of positions:
k+1, k+2, …, n-1 are properly arranged.

3. right = k

4. If right > 0 the actions from p. 2 and p. 3 repeat.

5. If right = 0 the row is sorted.

Bubble sort method

Bubble sort method

Bubble sort method

Selection sort works by finding the minimal
element and then inserting it into its correct

position by swapping with the element that is
in that minimal element's position. This makes

it unstable.

Since the sorting algorithms discussed so far are
efficient only with small input data size, with

large data volume it is necessary to use
algorithms with the O(nlog2 n) complexity

typical of sorting methods such as merge sort,
heap sort or quick sort.

Since the sorting algorithms examined so far are only
effective at a small size of input data, with a large volume of
data, it is necessary to use algorithms with the complexity
О(n.log2 n) characteristic of sorting methods such as merge

sorting, heap or quick sorting.

Questions and exercises:

1. Why Sorting algorithms are important ?

2. Which of the three sorting methods discussed
is unstable and why ?

3. Explain how bubble sort works ?

4. Explain how insertion sort works ?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 3. Algorithms and their applications in

databases for query optimization

❑ Topic 3. Sorting algorithms

❑ Lesson 2. Sorting algorithms - part II (Linear time sort -
Quick sort. Merge sort. Heap sort.)

SORTING PART II

Linear time sort. Quick sort. Merge sort. Heap sort.

Cormen, Thomas H.; Leiserson, Charles E., Rivest,
Ronald L., Stein, Clifford (2009)

[1990]. Introduction to Algorithms (3rd ed.). MIT
Press and McGraw-Hill.

Preslav Nakov, Panayot Dobrikov
(2002). Programming= ++Algorithms). Top Team

Co, Sofia.

https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein

Sorting

• In the previous lecture, we introduced three
algorithms based on sorting by comparison: by
insertion, by selection, and by the bubble
method.

• These algorithms have complexity O(n2) in the
worst case, some of them also in the average
case.

• However, these algorithms are fast for small input
sizes.

Quicksort

• Proposed by C.A.R. Hoare in 1962

• Divide and conquer algorithm.

• Sort "in-place" (like insert sorting, but different
from merge sorting).

• It has a lots of practical applications (with various
modifications).

Quicksort

• Divide and conquer algorithm (revision).

Quicksort
• Divide and conquer algorithm (revision).

Quicksort
• Quicksort of an array with n elements:

1. Divide: split the array into two subarrays
around center x, the elements in the lower
subarray by the elements in the upper
subarray.

2. Rule: Recursive sorting of the two subarrays.

3. Combine: trivial.
Keyword: linear time for subprograms splitting

Quicksort

• We apply the same algorithm to the left and right parts,
gradually reducing the left and right boundaries of the
considered subarrays until we reach intervals containing a
single element.

• After the algorithm finishes its work, the array will be
sorted.

• In the worst case, the algorithm has complexity O(n2).

• In the average case, the algorithm has complexity O(nlog n)

For example n=100, n2=10 000, log n=6.64, n*log n=664

Quicksort
Action principal:

1. Select a “pivot" element from the list of items to be
sorted.

2. The list is rearranged so that all items that are smaller
than the “pivot" element are placed to the left of it,
and all items that are larger are placed to the right of
it.

3. Recursively repeat the above steps on the list with the
smaller and the list with the larger elements.

4. The resulting lists are merged (concatenation) to
produce the sorted list.

Quicksort

Example 1:

Quicksort

Using a simplified pseudocode, we can see the
implementation of algorithm:

Quicksort
• We can see that the elements are checked only by comparing them

with other elements. This describes quick sorting as sorting by
comparison.

• The correctness of the algorithm is based on the following two
arguments:

– at each iteration, the already processed elements are placed at the
desired position: before the “pivot" element if they are smaller
than it and after the “pivot" element if they are larger than it;

– Each iteration decreases the number of elements that are not yet
ordered by one.

The correctness of the whole algorithm is proved by induction: for zero or one element, the
algorithm leaves the data unchanged; for a larger dataset, the algorithm concatenates two parts -

elements smaller than the “pivot" and elements larger than it.

Quicksort
Interactive example (Example 2) for a Quicksort:

Quicksort
Example 3 for a Quicksort:

The marked element is
the pivot element,
blue elements are
smaller or equal, and
red elements are
larger.

Quicksort

Selection of pivot element:

• In the earliest versions of quick sort, the leftmost item
was often selected as the pivot.

• Unfortunately, this doesn't work for already sorted arrays,
which are a fairly common case.

• The problem was easily solved by choosing either an
arbitrary index for the pivot element, or the middle
element of the partition, or (especially for longer series)
the median of the first, middle and last elements of the
partition (as recommended by Robert Sedgewick).

Quicksort

• In the quick sort, the elements are not inserted
sequentially into a particular tree structure, but
simultaneously form a tree, which is obtained in the
recursive call.

• The closest competitor to quick sort is heap sort.

• Here the worst time is always O(log n), but heap sorting is
generally considered slower than standard fast sorting.

• Merge sort O(log n). is another recursive algorithm that is
comparable to quick sort, with a worst-case time of
O(nlog n).

Mergesort
• At each step of the merge, we compare one element from the

first half of a to one element from the second half of a and
write one element to b, i. e. , we make 3 calls to elements of
the arrays.

• It is a stable algorithm in contrast to fast sorting in-place and
heap sorting, and can be easily adapted for use in linked lists
and very large lists stored on slow cartridge such as disks or
network storage.

• The main disadvantage of merge sort is the need for O(n)
additional array processing space, while the basic variant of
fast in-place sort and queue recursion use only O(log n).

Mergesort
• The algorithm is based on the principle of “divide and

conquer”.

• Principle of action:

1. The unsorted list is randomly divided into two
sublists of approximately total length (for linear time);

2. Recursively split sublists until single-length lists are
reached;

3. Merge two sublists into a new sorted list (for linear
time).

• The advantage of merge sorting is that it always works
with complexity n*log(n).

Mergesort

• The basis of this sorting algorithm is the “divide-and-conquer”
method: the sorted sequence is split into two parts, each of
which is sorted, and then the sorted subarrays are merged.

• The merge sort algorithm is one of the most efficient sorting
algorithms known.

• The algorithm can be used in parallel, i. e. in each core of the
processor is fed the method that splits the array into 2, and
then the numbers are merged at once.

• If we have 8 microprocessors, each processor is given the Split
method, and then all 8 parts are joined at once.

• The algorithm can become n times faster when we have n
processors

Mergesort

Mergesort

Mergesort
Example: Merge sort.

Mergesort

An interactive example of merge sort.

Heapsort

• Heapsort is a type of sort algorithm by direct selection.

• Although it is slower, with complexity O(n log n), than a good
application of the quicksort algorithm, it has the advantage of a
more favorable worst case because it does not use many arrays
or recursion.

• Heapsort was invented by J. W. J. Williams in 1964.

• Heap sort can be divided into two steps:

– First step, create a "heap" of elements of the set;

– Step two, a sorted array is created by taking and removing
the largest element from a pyramidal data structure (heap)
and placing it in another array.

Heapsort

• The "heap" is reconstructed on each remove, and once all
objects have been removed from the heap memory, the full
sorted array is created.

• The direction of the sorted items can be changed by selecting
min-heap or max-heap in the first step.

• to execute this algorithm two arrays are required - one for the
elements in the heap, a second for the sorted array.

• Heap sort can also be done with a single array - when an
element is removed from the "heap", it makes space, and the
element can be added to the end of the same array.

• Heapsort is mainly competed by quicksort. The worst case of
quicksort is O(n2).

Heapsort

Interactive example for a heapsort

Sorting

Sorting and statistics.

Sorting
Sorting and statistics.

Sorting - conclusions

• We introduced several algorithms that perform the sort in
O(nlgn) time.

• Merge sort and heap sort achieve this upper bound in the
worst case.

• Quick sort achieves this limit in the average case.

• Furthermore, for each of these algorithms, one can obtain a
sequence of n input data that makes the algorithm run in
O(nlgn) time.

• These algorithms share an interesting property: the
determination of the order of the elements in their sorting is
based only on comparisons between the input elements.

Sorting - conclusions

• External sorting in database refers to sorting algorithms that
are suitable for large files of records stored on disk that do
not fit entirely in main memory, such as most data-base
files.

• The typical external sorting algorithm uses a sort-merge
strategy, which starts by sorting small subfiles—called
runs—of the main file and then merges the sorted runs,
creating larger sorted subfiles that are merged in turn.

• The sort-merge algorithm, like other database algorithms,
requires buffer space in main memory, where the actual
sorting and merging of the runs is performed.

Questions and exercises:

1. What is sorting with linear time?

2. Explain how Merge Sort works ?

3. Explain how Heap Sort works ?

4. When is Quicksort better than Mergesort ?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 3. Algorithms and their applications in

databases for query optimization

❑ Topic 4. Graph algorithms

❑ Lesson 1. Introduction to graph algorithms.

INTRODUCTION TO GRAPH

ALGORITHMS

Carmen, Thomas H.; Leiserson, Charles E., Rivest,
Ronald L., Stein, Clifford (2009)

[1990]. Introduction to Algorithms (3rd ed.). MIT
Press and McGraw-Hill.

Preslav Nakov, Panayot Dobrikov
(2002). Programming= ++Algorithms). Top Team

Co, София.

https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein

Introduction

• This lecture presents methods for representing graphs
and for searching graphs.

• Graph search techniques are the bases in the field of
graph algorithms.

• A graph is viewed as a set of vertices (nodes) and arcs
(edges).

• Presentation of a set of objects and their relationships is
used.

• Usually the nodes correspond to the objects, the edges
to the connections between them.

Introduction

• Generally speaking, a graph is a data structure made
up of vertices (nodes) and links between them,
which are called edges.

• If the edges have a direction the graph is directed,
otherwise it is undirected.

• Edges can also have a weight (or length). Then the
graph is said to be weighted graph.

• Linked lists and trees are special cases of graphs.

• The following is an example of an directed, weighted
graph:

Introduction

• A directed, weighted graph:

And so! What Is A Graph?

• A collection of items, each of which can have
zero or more successors and zero or more
predecessors

• Trees and lists are just special cases of graphs

Graphs in Everyday Life

• A road map

• A map of airline routes

• Links between Web pages

• Relationships in a social network

• Diagram of flow capacities in a communication or
transportation network

Examples

F

D

C

A B E G

A

B

C

D

E

F

G

F

D

C

A B E G

Vertex, Edge, Label, and Weight

• The nodes in a graph are also called vertices

• The connections between vertices are called edges

• Vertices and edges can be labeled or unlabeled

• A numeric edge label is also called a weight

Examples

Connections

• A graph is connected if there is at least one
edge from each vertex to some other vertex

• A graph is complete if there is an edge from
each vertex to every other vertex

Examples

Paths and Cycles

• A path is a sequence of edges that allows one vertex
to be reached from another vertex

• A simple path is a path in which a vertex is not visited
more than once

• A cycle is a path in which a vertex is visited more
than one

Examples

AA

BB

DD

CC

AA

BB CC

Simple path: ABC Cycle: BCD

Directed Graphs (Digraphs)

• Each edge in a directed graph points in one direction,
allowing movement from a source vertex to a
destination vertex

• These edges are called directed edges

Directed Acyclic Graphs (DAGs)

• A directed acyclic graph is a directed graph with no
cycles

Directed and Undirected Graphs

• The edges in an undirected graph support movement
in both directions

Sparse and Unsparse Graphs

• Sparse graphs are connected graphs with a minimal
number of edges (roughly N edges)

• Unsparse graphs have close to the maximum number
of edges (roughly N2 edges)

Adjacent Vertices

• Vertex A is adjacent to vertex B if there is a directed
edge from B to A

Incident Edges

• Edge BA is incident to vertex B if it is a directed edge
from B to A

Presentation of graphs

• Presentation of graphs: One possible way to represent a
graph is by a neighborhood matrix. It consists of n rows
and n nodes, where n is the number of nodes in the
graph. Each row and column corresponds to a specific
node. If there is an edge between node 1 and node 2
then the element of position [1][2] is 1, and if there is no
edge - 0.

Presentation of graphs

• Presentation of graphs: Another possible way to present
a graph is by the incidence matrix. In it, the rows
represent the nodes and the pillars represent the edges.
The element of position [i][j] is -1 if edge j comes out
of node i, 1 if edge j comes in node i, and 0 otherwise.

When the graph is weighted, we can record the weights of the edges instead of units in
the neighborhood matrix.

Graph traversal

• Two graph search algorithms can also be implemented: in
depth and in breadth.

• In depth-first search, one starts from some initial node
and moves to its successor, then to the successor of the
successor, and so on until one reaches a node with no
successors (from which no edges go out). Then a return
is made to the previous node.

• In breadth-first search, one starts from some initial node
and searches all its successors, only then searches the
successors of the successors.

Graph traversal
• Given the following graph:

Graph traversal

• If we traverse the successors of a node in increasing
order of their numbers, then:

➢ in depth-first search, the nodes will be traversed in the
following sequence:

1 2 4 8 9 5 10 3 6 11 7

➢ in Breadth-first search, the nodes will be traversed in the
following sequence:

1 2 3 4 5 6 7 8 9 10 11

Graph traversal
• Given the following graph:

Graph traversal
• Given the following graph:

DFS

Graph traversal
• Given the following graph:

BFS

Graph traversal
application in DB

• Let's take a real-life example. Let's assume we've got a
database with a list of nodes and a list of links between them
(you can think of them as cities and roads). Our task is to find
the shortest path from node 1 to node 6.

• Well, in fact, it's nothing more than graph traversal. The very
first idea we may have would be to get all rows from both
tables and implement a DFS (Depth-First Search) or BFS
(Breadth-First Search) algorithm with a single SQL query!

Questions and exercises:
1. What are different methods for representing

graphs ?

2. What are different methods for searching in
graphs ?

3. What is a graph and what is it used for?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 3. Algorithms and their applications in

databases for query optimization

❑ Topic 4. Graph algorithms

❑ Lesson 2. Tree Cover of Graphs.

TREE COVER OF GRAPHS

Carmen, Thomas H.; Leiserson, Charles E., Rivest,
Ronald L., Stein, Clifford (2009)

[1990]. Introduction to Algorithms (3rd ed.). MIT
Press and McGraw-Hill.

Preslav Nakov, Panayot Dobrikov
(2002). Programming= ++Algorithms). Top Team

Co, София.

https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein

3

Problem: Laying Telephone Wire

Central office

4

Wiring: Naive Approach

Central office

Expensive!

5

Wiring: Better Approach

Central office

Minimize the total length of wire connecting the customers.

Cover trees
• Let G = (V, A) be a random graph. Any tree formed by

edges of G including all nodes of the graph is called a
cover (spanning) tree.

• Many real tasks in economics, management, etc. can be
interpreted as problems of finding (searching,
constructing) cover trees satisfying some optimality
conditions.

• In many problems it is necessary to find not just some
cover tree, but a tree with optimal properties. In the
undirected graph G = (V, A), let each edge (u, v) have
weight c(u, v), where the weight of the tree is the sum of
the weights of the participating arcs.

Cover trees

• Example: A construction company is looking at a project to
build roads between six settlements to provide
communications between these settlements. The costs
(prices) required to lay each of the possible routes between
these settlements are known. The company wants to
provide the road communications at minimum cost.

• Consider the undirected graph G = (V, A) whose nodes
correspond to the cities, the edges to the roads that can be
routed between these cities, and the weights of the edges
are the corresponding costs of routing the road. Clearly, in
this case the company's strategy comes down to finding a
cover tree for this graph with minimum weight (cost).

Cover trees

• The edges of the output graph are considered in random
order, and at each step of the algorithm a decision is made
whether or not to include the corresponding edge in the
cover tree.

• In this case, the edge that is included in the tree is colored
green and the one that is not included is colored black i. e.
the algorithm is a process of coloring the edges. The
colored edge is not considered further.

• At each step in the algorithm, a check is made whether the
edge under consideration in the set with the green (i. e.
already included in the tree) edges forms a loop. If so - the
edge is colored black (i. e. the cover tree is not included).

Cover trees

• The green (included in the tree) edges form one or more
components.

• The nodes of each component form a set of nodes, which
we will call a bunch.

• Therefore, the edge under consideration will form a loop
with the edges included in the tree if both of its nodes
belong to one of the bunches formed so far.

• In other words, in addition to coloring the edges, the
algorithm maintains (stores) and updates the nodes
bunces of the individual connected components.

Cover trees

• Description of the algorithm for finding a cover tree:

• STEP 1. We choose a random edge. We color this
edge green. We form a bunch from the nodes of this
edge.

• STEP 2. We choose a random uncolored edge. If
there is no such edge, proceed to step 4.

• STEP 3. The following four cases are possible:

Cover trees

• Description of the algorithm for finding a cover tree:

а) none of the nodes of the edge belongs to a
previously formed bunch - color the edge green and
form a new bunch from the nodes of this edge. Move
on to step 4.

б) both edges belong to the same vertex bunch
formed so far - we color the edge black, i. e. we do not
include it in the tree we are building. Move on to step
4.

Cover trees

• Description of the algorithm for finding a cover tree:

в) one vertex of the edge belongs to a given bunch
and the other does not belong to any of the bunches
formed so far - color the edge green and include the
vertex not included in the bunch containing the other
vertex. Move on to step 4.

г) the edge nodes belong to different bunches -
color the edge green and merge the two bunches into
one new bunch. Move on to step 4.

Cover trees

• Description of the algorithm for finding a cover tree:

• STEP 4. If all vertices of the graph are in a bunch (the
number of colored edges is one less than the number
of vertices of the graph), the edges colored green
form a cover tree for the graph. End.

• STEP 5. Move on to step 2.

Such formulated algorithm "works" well when a
cover tree exists and “loop" if none exists.

Cover trees

• Description of the algorithm for finding a cover tree:

Solution proposal by removing the "looping": In step 4,
we check if all edges of the graph are colored. If this is

the case, and the number of edges colored green is less
than the number of vertices of the graph minus one,

then there is no covering tree for the graph.

Cover trees
• I will illustrate the algorithm with the following

example:

Example 2: Given a graph G = (V, A)

Construct a cover tree for this graph.

Cover trees
• Solution:

Since after considering and coloring the sixth edge, all the
vertices of the graph turn out to be in one bunch (or which is the
same - the number of edges colored green is one less than the
number of vertices of the graph), the tree consisting of the edges
(1, 5), (2, 6), (4, 3), (5, 3), (5, 2) is the covering tree for the initial
graph.

14 Edge Color Bunch 1
(of nodes)

Bunch 2
(of nodes)

Bunch 3
(of nodes)

…

1 (1, 5) Green 1, 5 Ø Ø

2 (2, 6) Green 1, 5 2, 6 Ø

3 (4, 3) Green 1, 5 2, 6 4, 3

4 (5, 3) Green 1, 5, 4, 3 2, 6 Ø

5 (1, 4) Black 1, 5, 4, 3 2, 6 Ø

6 (5, 2) Green 1, 5, 4, 3, 2, 6 Ø Ø

Cover trees

• Solution:

• The weight of the found covering tree is:

c(1, 5) + c(2, 6) + c(4, 3) + c(5, 3) +

c(5, 2) = 6 + 1 + 10 + 9 + 8 = 34.

• Now let's apply the algorithm to the same graph,
considering its edges in the order of their increasing
weights.

Cover trees
• Solution:

The weight of the obtained cover tree in this case is:

c(6, 2) + c(6, 3) + c(4, 5) + c(4, 1) + c(1, 2) = 1 + 2 + 3 + 4
+ 5 = 15 and is the maximum cover tree.

№ Edge Color Bunch 1
(of nodes)

Bunch 2
(of nodes)

….

1 (6, 2) green 6, 2 Ø

2 (6, 3) green 6, 2, 3 Ø

3 (4, 5) green 6, 2, 3 4, 5

4 (4, 1) green 6, 2, 3 4, 5, 1

5 (1, 2) green 6, 2, 3, 4, 5, 1 Ø

Cover trees

• We can formulate the following two statements:

• St. 1. Minimum cover tree search algorithm.

The cover tree search algorithm is applied, with edges
considered in order of increasing their weights. If there are
edges with equal weights, they are considered in random
order.

• St. 2. Maximum cover tree search algorithm.

The covering tree search algorithm is applied, with edges
considered in order of decreasing their weights. If there are
edges with equal weights, they are considered in random
order.

Cover trees

• Minimum Spanning Trees example

Cover trees

• Kruskal's Minimum Spanning Tree Algorithm

• Kruskal has proposed a greedy algorithm. Let our
tree be GT = (V, T), on the graph G = (V, E):

1. We divide the N vertices of the graph into N
separate sets Si , i = 1 . . N;

2. We sort the edges by decreasing value of their
weights;

3. N - 1 times we choose the edge u with the least
weight for which u∉T and which connects two
separate sets Si and Sj into a new set Sk=Si⋃Sj;

Cover trees

• Minimum Spanning Tree: Kruskal’s Algorithm

Cover trees
• Minimum Spanning Tree: Interactive visualisation of

Kruskal’s Algorithm

Cover trees

In a database, Kruskal's algorithm can be used in the query optimization
process for the generation of the execution query tree.

Questions and exercises:

1. What does cover of graphs problem involve ?

2. What is a minimum spanning tree ?

3. How do you find the weight of an edge in a
minimum spanning tree?

4. What are some algorithms used to create a
minimum spanning tree?

5. What are the disadvantages of using Kruskal’s
algorithm on large graphs with many edges?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 3. Algorithms and their applications in

databases for query optimization

❑ Topic 4. Graph algorithms

❑ Lesson 3. Shortest Path Algorithms.

SHORTEST PATHS ALGORITHMS

Carmen, Thomas H.; Leiserson, Charles E., Rivest,
Ronald L., Stein, Clifford (2009)

[1990]. Introduction to Algorithms (3rd ed.). MIT
Press and McGraw-Hill.

Preslav Nakov, Panayot Dobrikov
(2002). Програмиране = ++Алгоритми). Top Team

Co, София.

https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein

Introduction

• A shortest path in a graph between two vertices is called
a path that starts at one vertex (node) and ends at the
other, and the sum of the weights of the edges involved
is minimal.

• Definition. Let be given a weighted directed graph G(V, E)
with edge weights given real numbers. The length of a
path in G is called the sum of the weights of the edges in
it.

• In some problems, it is possible to define the path length
not as a sum, but as some other function of the weights
of the edges (and even vertices) involved in the path.

Shortest paths in graphs
• In order for these algorithms to remain valid in these

cases, some specific optimality criteria must be satisfied
(they depend on the particular algorithm under
consideration).

• Since there may be no restriction that the path be
simple, we should be careful in cases where the graph
contains a loop.

• So, for example, if we are looking for a minimum path,
and there is a negative cycle (a loop of negative length),
we will be able to "pivot" on that cycle random number
of times, where the length of the path (equal to the sum
of the edges in it) will decrease arbitrarily much toward
minus infinity.

Shortest paths in graphs

• Similarly, if we are looking for a maximal path and there
is a positive cycle, then for each path that contains it, we
can "pivot" on the cycle, obtaining an arbitrarily large
length.

• Can the shortest path contain a cycle? As we have just
seen, it cannot contain a single negative weight cycle.

• It also cannot contain a positive-weight cycle, since
removing that cycle from the path produces a path with
the same source and vertices destination and a lower
path weight.

Shortest paths in graphs
• So if is a path and is a

cycle with a positive weight on that path (so that
than the path has weight

and so p cannot be the shortest
path from v0 to vk.

• So that only cycles with weight 0 are left. We can remove
cycles with weight 0 from each path and produce a path with
the same weight.

• Thus, if there is a shortest path from a vertex s (source) to a
destination v vertex containing a cycle with weight 0, then
there is another shortest path from s to v in this graph
without this cycle.

Shortest paths in graphs

• As we search for a shortest path in a graph with multiple cycles
of weight 0, we may repeatedly remove such detected cycles
until we find a shortest path in the graph without these cycles.

• Therefore, we can assume that when we find shortest paths,
they do not have the cycle, i. e., they are simple paths.

• Since every acyclic path in a graph G=(V, E) contains at most
|V| different vertices, contains the most |V|-1 arcs (edge).

• We can focus on finding the shortest path with the most |V|-1
arcs.

Shortest paths in graphs

a) Weighted directed graph with shortest path weights from
source s

b) The colored arcs form a tree of shortest paths from source s.

c) Another tree on a short path with the same root s.

Dijkstra's algorithm
• The most efficient method for finding the minimum

paths from one particular vertex to all others is the
Dijkstra algorithm. It is a type of greedy algorithm. It
only works on weighted graphs with positive weights.

• Let be given a weighted directed graph G(V, E) with n
vertices. In order the algorithm to be applied, the
weights of the edges f(i,j) must be positive numbers.

• The algorithm exists in many versions, the more common
version defines a vertex as the "initial" vertex and finds
the shortest distance from the initial vertex to all other
vertices in the graph.

Dijkstra's algorithm

• The algorithm can also be used to find the shortest
distance from a vertex to the vertex of a destination, by
stopping the algorithm after the shortest path to the
vertex of the destination has been determined.

• For example, if the vertices of a graph represent cities
and the endpoints represent the distance between two
cities connected by a direct path, Dijkstra's algorithm can
be used to find the shortest path between a city and all
other cities.

Dijkstra's algorithm

• Without applying any possible optimization, this
algorithm has a complexity of О(N2), where N is the
number of vertices in the given graph.

• If the algorithm is implemented with a possible
optimization, it obtains a complexity of О(log(N)*M),
where M is the number of edges in the graph, which is
generally a better complexity, but it can also exceed N2.

• Although it is the most efficient of the shortest path
finding algorithms, this algorithm is not applicable to
every graph. The graphs in which it is used must not have
negative cycles (cycles in which the sum of the edge
weights is less than 0).

Dijkstra's algorithm

• Example 1: Consider a graph G = (V, E) whose vertices
correspond to the airports in the world and whose arcs
correspond to the air lines between them. How to
choose a route to travel between two points so that this
route (path) is optimal in some sense ?

• Optimality can be related to length, speed, security, etc.

• Let each arc of the graph be mapped to a weight c(x, y),
which is interpreted in terms of kilometers, time, etc.
These weights can also be specified in a matrix C = (cij).
The elements of the weight matrix can be positive,
negative or zero.

Dijkstra's algorithm

• Example 2: A commercial traveler plans to travel from
Sofia to Varna, intending to visit other cities on the way.
The trader knows with great precision what profit the
possible visit of customers in the respective city will bring
him. What route should this trader choose?

• Consider a graph G with vertices the cities that a trader is
likely to visit.

• If the weight of each arc means "travel cost" - "expected
revenue", it is clear that there are likely to be arcs with a
negative weight (sections where transport costs are
greater than expected profit).

Dijkstra's algorithm
• In this case, the commercial traveler must choose a route

corresponding to the shortest route in the graph
between the vertices "Sofia" and "Varna. "

• We note that the shortest path search algorithms are
different in the cases "all weights are non-negative" and
the weights are arbitrary.

• Furthermore, in the absence of an arc (x, y) from the
graph, we will consider its weight to be = ∞. We will call
the weights of arcs and paths by the most natural term
for the case - lengths.

• In the problem of finding the shortest paths, the
constraint that there are no cycles with negative weight
in the graph G is imposed.

Dijkstra's algorithm
The idea of Dijkstra's algorithm

• In this algorithm, the lengths cij of all arcs are assumed to
be non-negative.

• The algorithm can be considered as a process of
sequentially marking the vertices of a graph with
corresponding numbers.

• In the general case, the marking number d(x) at vertex x
is temporary and gives an upper bound for the path
length from s to x.

• During the algorithm’s execution, the values of the
marking numbers are decreased, with exactly one of the
temporary marking numbers held constant (colored) at
each step.

Dijkstra's algorithm

The idea of Dijkstra's algorithm

• In this case, the constant (colored) marking number d(x)
is no longer some upper bound, but is the exact length of
the shortest path from s to x.

• We also consider the corresponding vertex x to be
colored.

• When except of shortest path length, the path itself is
searched as well one of the arcs of the graph is also
colored, thus including it in the searched path.

Dijkstra's algorithm

Steps of the Dijkstra algorithm

• STEP 1. Color the initial vertex s, put

d(s) = 0 (constant marking number),

d(x) = ∞ (temporary marking numbers), x ≠ s,

p = s (the last colored vertex).

• STEP 2. (Changing the temporary marking numbers.) For
all uncolored vertices x, recalculate d(x) using the
formula:

d(x) = min {d(x), d(p) + c(p, x)} (1)

Dijkstra's algorithm

Steps of the Dijkstra algorithm

If for any uncolored vertex x, d(x) = ∞, terminate the
procedure - there are no paths from s to the uncolored
vertices in the graph. Otherwise, color the vertex x for
which the weight d(x) is minimum. Also color the arc ,
entering in x, for which the minimum is reached. Put p = x.

• STEP 3. If p = t, end of procedure, the only path from s to
t consisting of colored arcs is the shortest path between s
and t. Otherwise, go to step 2.

Dijkstra's algorithm

Problem: Find the shortest path between s and t in the
following graph using Dijkstra's algorithm:

STEP 1. We assume d(s) = 0 and d(x) = ∞, for all other
vertices. We color s. We assume p = s.

Dijkstra's algorithm

STEP 2. Using formula (1), we compute the new marking
numbers for the uncolored vertices of the graph.

d(a) = min {d(a), d(s) + c(s, a)} = min {∞, 0 + 2} = 2,

d(d) = min {d(d), d(s) + c(s, d)} = min {∞, 0 + 3} = 3,

d(c) = min {d(c), d(s) + c(s, c)} = min {∞, 0 + 8} = 8.

Since d(a) is the minimum marking number among the
recomputed numbers, we color the vertex a and the arc (s,
a). We assume p = a.

STEP 3. Forward us to step 2, since the vertex t is not
colored.

Dijkstra's algorithm
STEP 2. p = a

d(b) = min {∞, d(a) + c(a, b)} = min {∞, 2 + 4} = 6,

d(d) = 3, d(c) =8, d(t) = ∞.

The minimum number is d(d) = 3, so we color the vertex d and
the arc (s, d). We assume p = d.

STEP 3. Forward us to step 2.

STEP 2. p = d

d(c) = min {8, d(d) + c(d, c)} = min {8, 3 + 1} = 4,

d(b) = min {6, d(d) + c(d, b)} = min {6, 3 + 2} = 5,

d(t) = ∞.

Color the vertex c and the arc (d, c). We assume p = c.

STEP 3. Forward us to step 2.

Dijkstra's algorithm

STEP 2. p = c

d(b) = min {5, 4 + 3} = 5,

d(t) = min {∞, d(c) + c(c, t)} = min {∞, 4 + 1} = 5.

The minimum is any of the numbers d(b) = d(t) = 5. We
choose d(t), color the vertex t and the arc (c, t). We assume
p = t.

STEP 3. End of algorithm. The tree (s, a), (s, d), (d, c), (c, t) of
the shortest paths also gives the shortest (s - t) path (s, d),
(d, c), (c, t) whose length is 3 + 1 + 1 = 5.

Dijkstra's algorithm

Interactive example:

Bellman–Ford algorithm
• The Bellman-Ford algorithm is an algorithm that computes the

shortest paths from one vertex to all other vertices in a directed,
weighted graph. The Bellman-Ford algorithm is an example of
Dynamic Programming and follows the bottom-up approach.

• It is slower than Dijkstra's algorithm , but much more flexible
when traversing graphs whose edge weights are negative
numbers.

• The algorithm is named after two of its creators, Richard Bellman
and Lester Ford Jr, who published the algorithm in 1958 and
1956, respectively. Edward F. Moore also published the same
algorithm in 1957 and for this reason it is sometimes found as
the Bellman-Ford-Moore algorithm.

Bellman–Ford algorithm
Bellman-Ford algorithm, is very rarely used in race
programming, mainly when one has to search for a shortest
path in a graph with negative edges. Here it is:

1. For each vertex adjacent to the initial vertex, the value
of the shortest path for the moment is the edge next to
it, and for the rest, infinity.

2. For each vertex in the graph, we check whether the
current shortest path to it is not greater than the sum of
the paths of each of the vertices from which it can be
reached + the length of the edge between them.

Step 2 is repeated N-2 times, then we have the final
shortest paths in the graph.

Bellman–Ford algorithm
Implementation of the Bellman-Ford algorithm for a 5-
vertex graph

a) The situation right before the first crossing of the
vertices.

(b) - (e) The situation after each subsequent passage
through the vertices.

Bellman–Ford algorithm

Interactive example:

Graph traversal
application in DB

• Let's go back to the example from one of the previous
lectures. Let's assume we've got a database with a list of
nodes and a list of links between them (you can think of them
as cities and roads). Our task is to find the shortest path from
node 1 to node 6.

• we may have would be to get all rows from both tables and
implement a Dijkstra's algorithm or Bellman–Ford algorithm
with a single SQL query!

Questions and exercises:

1. What is shortest path in a graph ?

2. Why does Dijkstra's Algorithm fail on negative
weights ?

3. Why is Dijkstra's algorithm considered a greedy
algorithm ?

4. What are the differences between Bellman
Ford’s and Dijkstra’s algorithms?

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 3. Algorithms and their applications in

databases for query optimization

❑ Topic 4. Graph algorithms

❑ Lesson 4. Maximum flow in graph.

MAXIMUM FLOW GRAPH

Carmen, Thomas H.; Leiserson, Charles E., Rivest,
Ronald L., Stein, Clifford (2009)

[1990]. Introduction to Algorithms (3rd ed.). MIT
Press and McGraw-Hill.

Preslav Nakov, Panayot Dobrikov
(2002). Pragramming= ++Algorithms). Top Team

Co, Sofia.

https://en.wikipedia.org/wiki/Thomas_H._Cormen
https://en.wikipedia.org/wiki/Charles_E._Leiserson
https://en.wikipedia.org/wiki/Ron_Rivest
https://en.wikipedia.org/wiki/Clifford_Stein

Outline

• Network flow definitions

• Flow examples

• Augmenting Paths

• Residual Graph

• Ford Fulkerson Algorithm

• Cuts

• Maxflow-MinCut Theorem

Network Flow Definitions

• Capacity

• Source, Sink

• Capacity Condition

• Conservation Condition

• Value of a flow

Flow Example

u

s t

v

20

20

30

10

10

Introduction

• The flow sets a way to transfer objects from one vertex
of a graph to another along its arcs (or edges).

• The initial vertex from which this transfer of quantities
starts is called source and is usually denoted by s.

• The vertex to which this transfer has to be carried out is
called sink (stock). The sink is usually denoted by 𝑡.

• Consider an oriented graph.

Introduction
• We may consider it as a network of pipes in which a

substance moves from a source to a sink.

• Object flows may be considered as the flow of electricity
through wires, pipe pieces, information connections, or
goods from the manufacturer to the consumer.

• Objects that move, "flow" from a source to a sink are called
flow units or units only.

• The amount of flow units that can pass through the arc is
called a capacity (throughput).

• We can use the max flow algorithm in SQL query
optimization to reduce network traffic costs or avoid timeout
errors.

Flow networks

• A network is a graph G=(V, E) in which each arc is
assigned some throughput (capacity).

• Let’s consider a flow network in an oriented graph
𝐺=(𝑉,𝐸), each edge (𝑢,𝑣)∈𝐸 of which is denoted by a
number 𝑐(𝑢,𝑣)≥0 called throughput (capacity).

• In the case 𝑢, 𝑣 ∉𝐸. We assume c(u,v)=0. We set two
vertices in the graph: source s and sink t.

Flow networks

• For convenience, we can assume that each vertex 𝑣∈𝑉
lies somehow on the path 𝑠→𝑣→𝑡 from source to sink. In
this case, the graph also connects |𝐸|≥|𝑉|-1.

• The figure below shows an example:

Flow networks

• In the figure above we see:

(a) The flow in 𝐺=(𝑉,𝐸), describes the possibility of
transporting goods from the source factory s in
Vancouver to a sink t - warehouse in Winnipeg. On each
edge is written the maximum number of boxes that can
be sent per day.

(b) 𝑓 flow in the network G with value |𝑓|= 19.
Flow/capacity are indicated on each arc.

• The value |𝑓| of the flow f is defined as:

Ford-Fulkerson method
• The Ford–Fulkerson method or Ford–Fulkerson algorithm

(FFA) is a greedy algorithm that computes the maximum
flow in a flow network.

• We are talking about method, not the algorithm, as there
are several algorithms for implementing this method;
they differ during operation.

• Three notions play a key role in the Ford-Fulkerson
method: residual network, complementary path and cut.

• Finding the maximum flow by Ford-Fulkerson method is
performed step by step.

• At the beginning the flow is zero (and its value equals
zero).

Ford-Fulkerson method

• At each step we increase the value of the flow. In order
to do this, we find an augmenting path in which we can
skip many more "substances" , and use it to increase the
flow.

• This step is repeated until there are augmenting path.

• This shows the Max-flow min-cut theorem.

Ford-Fulkerson method

• Residual networks

• Let a network and a flow in it be given. Informally, the
residual network represents the stream network, but
with only the edges remaining along which flow can still
be passed.

• The residual network is defined on the same graph G(V,
E), but a new function is introduced - residual capacity, :
cf(u, v) = c(u, v) - f(u, v). Then Gf(V, E'), where E' are those
edges for which cf(u, v) > 0. We will call them residual
capacity edges.

Ford-Fulkerson method

• Network cuts

• The Ford - Fulkerson method adds successive flows along
the augmenting path until the maximum flow is
obtained.

• According to the maximum flow and minimum cut
theorem, the flow is maximum if and when the residual
network does not contain an augmenting path.

• The minimum cut is the one with the lowest throughput
(among all cuts in the network).

Ford-Fulkerson method
• Network cuts

• The figure below shows a network cut.
(𝑠, 𝑣1, 𝑣2 , 𝑣3, 𝑣4, 𝑡)

• The flow through this cut is:

𝑓(𝑣1, 𝑣3)+𝑓 𝑣2, 𝑣3 + 𝑓(𝑣2,𝑣4) = 12 + −4 + 11 = 9

and the throughput of the cut is:
𝑐 𝑣1, 𝑣3 + 𝑐 𝑣2, 𝑣4 = 12 + 14 = 26

Ford-Fulkerson method

• Network cuts

• Cut (S,T) in the network from the figure above.

• Here 𝑆={𝑠,𝑣1,𝑣2} (the black vertices) and T={𝑣3,𝑣4,𝑡} (the
white vertices).

• At 𝑓(𝑆,𝑇)=19 (flow through the cut) and s(𝑆,𝑇)=26
(throughput)

• As can be seen, the flow through the cut as opposed to
the throughput of the cut can include negative terms as
well.

Ford-Fulkerson method

• General scheme of the Ford-Fulkerson algorithm

• The Ford-Fulkerson method works by choosing an
arbitrary increasing path p and increase the flow𝑓 at
each step.

• Add the flow value 𝐶𝑓(𝑝) to the path p.

• This algorithm uses an array 𝑓[u, v] to store the current
flow values.

• 𝑐 𝑢, 𝑣 = 0, if (𝑢, 𝑣) doesn’t belong to Е.

• The running time of the Ford-Fulkerson procedure
depends on how many times it should be run.

Ford-Fulkerson method

• In principle, the algorithm may not stop at all if the flow
value continues to increase in smaller steps without
reaching a maximum.

• However, it is also possible to run the algorithm in
polynomial time.

• The Ford-Fulkerson algorithm is good because it is faster
and significantly less complex than other network flow
algorithms.

• It belongs to the group of optimization methods and was
created in 1956.

Ford-Fulkerson method

• Other possible solutions are the Edmonds-Karp
algorithm, which removes the dependence of the Ford-
Fulkerson algorithm on the magnitude of the capacities,
the Goldberg algorithms, Onaga, etc.

• Practically, for significantly large networks, there is no
algorithm that can derive the maximum throughput in an
acceptable amount of time.

• The max-flow min-cut theorem gives us a reason to use
the Ford-Fulkerson algorithm to find the numerical value
of the minimum cut.

Ford-Fulkerson method

• But an important question is also where, in fact, is it
located (minimum cut)?

• If it turns out that the traffic needed between two nodes
of the network is greater than the capacity of the lines
connecting them, the finding will show which are the
lines that limit it (it may be that due to unused reserves
only one line needs to be expanded) and will therefore
answer the question which lines should be optimized.

Ford-Fulkerson method
• EXAMPLE:

• The following image shows a flow network. The first
value of each edge represents the flow, which is initially
0, and the second value represents the capacity.

Ford-Fulkerson method
• EXAMPLE:

• The value of the flow of a network is the sum of all the
flows that get produced in the source s , or equivalently
to the sum of all the flows that are consumed by the sink
t. A maximal flow is a flow with the maximal possible
value. Finding this maximal flow of a flow network is the
problem that we want to solve.

• In the visualization with water pipes, the problem can be
formulated in the following way: how much water can we
push through the pipes from the source to the sink?

Ford-Fulkerson method
• EXAMPLE:

• The following image shows the maximal flow in the flow
network:

Ford-Fulkerson method
• EXAMPLE:

10 is the maximal flow

Ford-Fulkerson method
more than one source and consumer

• If more than one source and consumer are given in the
problem, we can easily reduce it to the one just
discussed above.

• Let the sources be s1, s2,…, sp, and consumers t1, t2,…, tq.

• We add a new vertex s in the graph called supersource
and a new vertex t, the superconsumer.

• In addition to these two new vertices, we also add the
edges:

Ford-Fulkerson method

more than one source and consumer

• Using the Ford-Fulkerson algorithm, we can find a
maximum flow from s to t that will be equal to the one
sought in the original version of the problem.

• It is possible to complicate the problem by placing a
restriction on the flow through each vertex.

Ford-Fulkerson method
more than one source and consumer

• We are looking for the maximum flow from the source s to the
consumer t. Again, we can solve the problem by reducing it to the
standard maximum flow search problem. For this purpose we will
construct a new graph G'(V',E') where:

1) on each vertex iϵV correspond two vertices v’:i1 and i2 that
will be connected by an edge (i1, i2). The throughput c(i1, i2) of this
edge will be equal v(i).

2) each edge (i, j) from G is transferred to G’ as the edge (i2, j1).

3) In the new graph G’ there won’t be a function v restricting
the flow through the vertices.

• As in the previous paragraph, the maximum flow in G′ found by the
Ford-Fulkerson algorithm will be maximum for the graph G as well.

Questions and exercises:

1. What does Maximum flow problem involve ?

2. A network can have only one source and one sink
! True or false ?

3. What is the source ?

4. Which algorithm is used to solve a maximum flow
problem?

5. Ford-Fulkerson algorithm is used to solve a
maximum flow problem ! True or false ?

Thank you for your
attention!

ON-LINE DISTANCE COURSE
ON DATABASES

❑Module 4. Biological Databases
❑ Topic 1. Amino acids, peptides and proteins

❑ Lesson 1. Amino acids

Lehninger, A. L., Nelson, D. L., & Cox, M. M.
(2000). Lehninger principles of biochemistry.

New York: Worth Publishers.

AMINO ACIDS

Contents
• Introduction

• Physical Properties

• Chemical Properties

• Structure of Amino acids

• Classification of amino acids

• Functions of Amino acids

Introduction

Amino acids constitute a group of neutral products clearly
distinguished from other natural compounds chemically, mainly
because of their ampholytic properties, and biochemically, mainly
because of their role as protein constituents. An amino acid is a
carboxylic acid-containing an aliphatic primary amino group in the α
position to the carboxyl group and with a characteristic
stereochemistry. Proteins are biosynthesized from 20 amino acids in
a system involving strict genetic control. Thus, amino acids are the
basic unit of proteins. More than 300 amino acids are found in
nature but only 20 amino acids are standard and present in protein
because they are coded by genes. Other amino acids are modified
amino acids and are called non-protein amino acids. Some are
residues modified after a protein has been synthesized by
posttranslational modifications; others are amino acids present in
living organisms but not as constituents of proteins.

Physical Properties

• Amino acids are colorless, crystalline solid.

• All amino acids have a high melting point greater than 200o

• Solubility: They are soluble in water, slightly soluble in
alcohol, and dissolve with difficulty in methanol, ethanol,
and propanol. R-group of amino acids and pH of the solvent
play important role in solubility.

• On heating to high temperatures, they decompose.

• All amino acids (except glycine) are optically active.

• Peptide bond formation: Amino acids can connect with a
peptide bond involving their amino and carboxylate groups.
A covalent bond formed between the alpha-amino group of
one amino acid and an alpha-carboxyl group of other
forming -CO-NH-linkage. Peptide bonds are planar and
partially ionic.

Chemical Properties

• Zwitterionic property

A zwitterion is a molecule with functional groups, of which at
least one has a positive and one has a negative electrical
charge. The net charge of the entire molecule is zero. Amino
acids are the best-known examples of zwitterions. They
contain an amine group (basic) and a carboxylic group (acidic).
The -NH2 group is the stronger base, and so it picks up H+
from the -COOH group to leave a zwitterion. The (neutral)
zwitterion is the usual form of amino acids that exist in the
solution.

• Amphoteric property

Amino acids are amphoteric in nature that is they act as both
acids and base due to the two amine and carboxylic groups
present.

Chemical Properties

• Ninhydrin test
When 1 ml of Ninhydrin solution is added to a 1 ml
protein solution and heated, the formation of a violet
color indicates the presence of α-amino acids.

• Xanthoproteic test
The xanthoproteic test is performed for the detection of
aromatic amino acids (tyrosine, tryptophan, and
phenylalanine) in a protein solution. The nitration of
benzoid radicals present in the amino acid chain occurs
due to a reaction with nitric acid, giving the solution
yellow coloration.

Chemical Properties

• Reaction with Sanger’s reagent

Sanger’s reagent (1-fluoro-2, 4-dinitrobenzene) reacts
with a free amino group in the peptide chain in a
mild alkaline medium under cold conditions.

• Reaction with nitrous acid

Nitrous acid reacts with the amino group to liberate
nitrogen and form the corresponding hydroxyl.

Structure of Amino acids

All 20 of the common amino acids are alpha-amino acids. They
contain a carboxyl group, an amino group, and a side chain (R
group), all attached to the α-carbon.

Exceptions are:

• Glycine, which does not have a side chain. Its α-carbon
contains two hydrogens.

• Proline, in which the nitrogen is part of a ring.

• Thus, each amino acid has an amine group at one end and an
acid group at the other, and a distinctive side chain. The
backbone is the same for all amino acids while the side chain
differs from one amino acid to the next.

• All of the 20 amino acids except glycine are of the L-
configuration, as for all but one amino acid the α-carbon is an
asymmetric carbon. Because glycine does not contain an
asymmetric carbon atom, it is not optically active and, thus, is
neither D nor L.

Classification of amino acids on the basis of R-
group

Classification of amino acids on the basis of R-
group
1. Nonpolar, Aliphatic amino acids: The R groups in this class of amino

acids are nonpolar and hydrophobic. Glycine, Alanine, Valine, leucine,
Isoleucine, Methionine, Proline.

2. Aromatic amino acids: Phenylalanine, tyrosine, and tryptophan, with
their aromatic side chains, are relatively nonpolar (hydrophobic). All
can participate in hydrophobic interactions.

3. Polar, Uncharged amino acids: The R groups of these amino acids are
more soluble in water, or more hydrophilic, than those of the
nonpolar amino acids, because they contain functional groups that
form hydrogen bonds with water. This class of amino acids includes
serine, threonine, cysteine, asparagine, and glutamine.

4. Acidic amino acids: Amino acids in which R-group is acidic or
negatively charged. Glutamic acid and Aspartic acid

5. Basic amino acids: Amino acids in which R-group is basic or positively
charged. Lysine, Arginine, Histidine

Classification of amino acids on the basis of
nutrition

Classification of amino acids on the basis of
nutrition
Essential amino acids (Nine)

Nine amino acids cannot be synthesized in the body and, therefore, must
be present in the diet in order for protein synthesis to occur.

These essential amino acids are histidine, isoleucine, leucine, lysine,
methionine, phenylalanine, threonine, tryptophan, and valine.

Non-essential amino acids (Eleven)

These amino acids can be synthesized in the body itself and hence do not
necessarily need to be acquired through diet.

These non-essential amino acids are Arginine, glutamine, tyrosine,
cysteine, glycine, proline, serine, ornithine, alanine, asparagine, and
aspartate.

Classification of amino acids on the basis of the
metabolic fate

Classification of amino acids on the basis of the
metabolic fate

1. Glucogenic amino acids: These amino acids serve as
precursors of gluconeogenesis for glucose formation.
Glycine, alanine, serine, aspartic acid, asparagine,
glutamic acid, glutamine, proline, valine, methionine,
cysteine, histidine, and arginine.

2. Ketogenic amino acids: These amino acids break
down to form ketone bodies. Leucine and Lysine.

3. Both glucogenic and ketogenic amino acids: These
amino acids break down to form precursors for both
ketone bodies and glucose. Isoleucine, Phenylalanine,
Tryptophan, and tyrosine.

Functions of Amino acids

1. In particular, 20 very important amino acids are crucial for life
as they contain peptides and proteins and are known to be
the building blocks for all living things.

2. The linear sequence of amino acid residues in a polypeptide
chain determines the three-dimensional configuration of a
protein, and the structure of a protein determines its function.

3. Amino acids are imperative for sustaining the health of the
human body. They largely promote the:

Production of hormones

• Structure of muscles

• Human nervous system’s healthy functioning

• The health of vital organs

• Normal cellular structure

Functions of Amino acids

4. The amino acids are used by various tissues to synthesize
proteins and to produce nitrogen-containing compounds
(e.g., purines, heme, creatine, epinephrine), or they are
oxidized to produce energy.

5. The breakdown of both dietary and tissue proteins yields
nitrogen-containing substrates and carbon skeletons.

6. The nitrogen-containing substrates are used in the
biosynthesis of purines, pyrimidines, neurotransmitters,
hormones, porphyrins, and nonessential amino acids.

7. The carbon skeletons are used as a fuel source in the
citric acid cycle, used for gluconeogenesis, or used in
fatty acid synthesis.

Review Questions

• Explain the physical and chemical properties of
amino acids.

• What are the most popular classifications of amino
acids?

Thank you for your
attention!

ON-LINE DISTANCE COURSE
ON DATABASES

❑Module 4. Biological Databases

❑ Topic 1. Amino acids, peptides and proteins

❑ Lesson 2. Peptides and proteins

Lehninger, A. L., Nelson, D. L., & Cox, M. M.
(2000). Lehninger principles of biochemistry.
New York: Worth Publishers.

Molecular Biology of the Cell. 4th edition.
Alberts B, Johnson A, Lewis J, et al.
New York: Garland Science; 2002.

PEPTIDES AND PROTEINS

Contents
• Introduction

• Primary Structure

• Secondary Structure

• Tertiary Structure

• Quaternary Structure

Introduction

From a chemical point of view, proteins are by far the
most structurally complex and functionally sophisticated
molecules known. This is perhaps not surprising, once
one realizes that the structure and chemistry of each
protein has been developed and fine-tuned over billions
of years of evolutionary history. We start this chapter by
considering how the location of each amino acid in the
long string of amino acids that forms a protein
determines its three-dimensional shape. We will then
use this understanding of protein structure at the atomic
level to describe how the precise shape of each protein
molecule determines its function in a cell.

The Shape of a Protein Is Specified by Its Amino
Acid Sequence

A peptide bond

This covalent bond forms
when the carbon atom from
the carboxyl group of one
amino acid shares electrons
with the nitrogen atom
(blue) from the amino
group of a second amino
acid. As indicated, a
molecule of water is lost in
this condensation reaction.

The Shape of a Protein Is Specified by Its Amino
Acid Sequence

The structural components of a protein

A protein consists of a polypeptide
backbone with attached side chains.
Each type of protein differs in its
sequence and number of amino acids;
therefore, it is the sequence of the
chemically different side chains that
makes each protein distinct. The two
ends of a polypeptide chain are
chemically different: the end carrying
the free amino group (NH3 +, also
written NH2) is the amino terminus, or
N-terminus, and that carrying the free
carboxyl group (COO–, also written
COOH) is the carboxyl terminus or C-
terminus. The amino acid sequence of
a protein is always presented in the N-
to-C direction, reading from left to
right..

The Shape of a Protein Is Specified by Its Amino
Acid Sequence

The 20 amino acids found in proteins

Both three-letter and one-letter abbreviations are listed.
As shown, there are equal numbers of polar and
nonpolar side chains. For their atomic structures,

The Shape of a Protein Is Specified by Its Amino
Acid Sequence

Steric limitations on the bond angles in a polypeptide chain

(A) Each amino acid contributes three bonds (red) to the backbone of the chain. The peptide bond
is planar (gray shading) and does not permit rotation. By contrast, rotation can occur about the
Cα–C bond, whose angle of rotation is called psi (ψ), and about the N–Cα bond, whose angle of
rotation is called phi (ϕ). By convention, an R group is often used to denote an amino acid side
chain (green circles). (B) The conformation of the main-chain atoms in a protein is determined by
one pair of ϕ and ψ angles for each amino acid; because of steric collisions between atoms within
each amino acid, most pairs of ϕ and ψ angles do not occur. In this so-called Ramachandran plot,
each dot represents an observed pair of angles in a protein.

Proteins Fold into a Conformation of Lowest
Energy

The refolding of a denatured protein

(A) This experiment demonstrates that the conformation of a
protein is determined solely by its amino acid sequence. (B)
The structure of urea. Urea is very soluble in water and
unfolds proteins at high concentrations, where there is about
one urea molecule for every six water molecules.

The α Helix and the β Sheet Are Common
Folding Patterns

The regular conformation of the polypeptide
backbone observed in the α helix and the β sheet

(A, B, and C) The α helix. The N–H of every peptide
bond is hydrogen-bonded to the C=O of a
neighboring peptide bond located four peptide
bonds away in the same chain. (D, E, and F) The β
sheet. In this example, adjacent peptide chains run in
opposite (antiparallel) directions. The individual
polypeptide chains (strands) in a β sheet are held
together by hydrogen-bonding between peptide
bonds in different strands, and the amino acid side
chains in each strand alternately project above and
below the plane of the sheet. (A) and (D) show all the
atoms in the polypeptide backbone, but the amino
acid side chains are truncated and denoted by R. In
contrast, (B) and (E) show the backbone atoms only,
while (C) and (F) display the shorthand symbols that
are used to represent the α helix and the β sheet in
ribbon drawings of proteins

The α Helix and the β Sheet Are Common
Folding Patterns

Two types of β sheet structures

(A) An antiparallel β sheet (see
Figure 3-9D). (B) A parallel β
sheet. Both of these structures
are common in proteins.

The Protein Domain Is a Fundamental Unit of
Organization

A protein formed from four domains

In the Src protein shown, two of the domains form a protein kinase enzyme, while the
SH2 and SH3 domains perform regulatory functions. (A) A ribbon model, with ATP
substrate in red. (B) A spacing-filling model, with ATP substrate in red. Note that the
site that binds ATP is positioned at the interface of the two domains that form the
kinase.

The Protein Domain Is a Fundamental Unit of
Organization

Ribbon models of three different protein domains

(A) Cytochrome b562, a single-domain protein involved in electron transport in mitochondria. This
protein is composed almost entirely of α helices. (B) The NAD-binding domain of the enzyme lactic
dehydrogenase, which is composed of a mixture of α helices and β sheets. (C) The variable domain of
an immunoglobulin (antibody) light chain, composed of a sandwich of two β sheets. In these examples,
the α helices are shown in green, while strands organized as β sheets are denoted by red arrows.

Proteins Can Be Classified into Many Families

The conformations of two serine proteases compared

The backbone conformations of elastase and chymotrypsin. Although only those amino acids in the
polypeptide chain shaded in green are the same in the two proteins, the two conformations are very
similar nearly everywhere. The active site of each enzyme is circled in red; this is where the peptide
bonds of the proteins that serve as substrates are bound and cleaved by hydrolysis. The serine
proteases derive their name from the amino acid serine, whose side chain is part of the active site of
each enzyme and directly participates in the cleavage reaction.

Proteins Can Be Classified into Many Families

A comparison of a class of DNA-binding domains, called homeodomains, in a pair of proteins from two
organisms separated by more than a billion years of evolution

(A) A ribbon model of the structure common to both proteins. (B) A trace of the α-carbon positions.
The three-dimensional structures shown were determined by x-ray crystallography for the yeast α2
protein (green) and the Drosophila engrailed protein (red). (C) A comparison of amino acid sequences
for the region of the proteins shown in (A) and (B). Black dots mark sites with identical amino acids.
Orange dots indicate the position of a three amino acid insert in the α2 protein.

Proteins Can Be Classified into Many Families

Percentage of total genes containing one or more copies of the indicated protein
domain, as derived from complete genome sequences

Note that one of the three domains selected, the immunoglobulin domain, has been
a relatively late addition, and its relative abundance has increased in the vertebrate
lineage. The estimates of human gene numbers are approximate.

Sequence Homology Searches Can Identify
Close Relatives

The use of short signature sequences to find homologous protein domains

The two short sequences of 15 and 9 amino acids shown (green) can be
used to search large databases for a protein domain that is found in many
proteins, the SH2 domain. Here, the first 50 amino acids of the SH2
domain of 100 amino acids is compared for the human and Drosophila Src
protein. In the computer-generated sequence comparison (yellow row),
exact matches between the human and Drosophila proteins are noted by
the one-letter abbreviation for the amino acid; the positions with a similar
but nonidentical amino acid are denoted by +, and nonmatches are blank.
In this diagram, wherever one or both proteins contain an exact match to
a position in the green sequences, both aligned sequences are colored
red.

Some Protein Domains, Called Modules, Form
Parts of Many Different Proteins

An extensive shuffling of blocks of protein
sequence (protein domains) has occurred during
protein evolution. Those portions of a protein
denoted by the same shape and color in this
diagram are evolutionarily related. Serine proteases
like chymotrypsin are formed from two domains
(brown). In the three other proteases shown, which
are highly regulated and more specialized, these
two protease domains are connected to one or
more domains homologous to domains found in
epidermal growth factor (EGF; green), to a calcium-
binding protein (yellow), or to a “kringle” domain
(blue) that contains three internal disulfide bridges.

Some Protein Domains, Called Modules, Form
Parts of Many Different Proteins

The three-dimensional
structures of some protein
modules

In these ribbon diagrams, β-
sheet strands are shown as
arrows, and the N- and C-
termini are indicated by red
spheres

Review Questions

• Explain structural organization of peptides.

• What are the main characteristics of each level of
organization of peptide molecules?

Thank you for your
attention!

ON-LINE DISTANCE COURSE
ON DATABASES

❑Module 4. Biological Databases

❑ Topic 2. Primary and Secondary Databases of
Protein. 3D structure protein databases.

❑ Lesson 1. Primary and Secondary Databases of
Protein

https://www.geneticsmr.com/sites/default/files/articles/year2
017/vol16-1/pdf/gmr-16-01-gmr.16019645_0.pdf

PRIMARY AND SECONDARY DATABASES
OF PROTEIN

Contents
• Introduction

• Biological Databases

• Uses of biological Databases

• Primary databases

• Secondary databases

• Composite Databases (Hybrid databases and
families of databases)

Introduction
As the number of published sequences increased, the workflow
changed: by opening discussions with publishers of the scientific
literature, the organisations behind these databases convinced
publishers to request that researchers submit their sequences to
one of the public databases before submitting the paper. In return,
authors gained an accession number that could then be cited in the
paper. This model has now been followed by many providers of
public biological data.

The other important aspect of these collaborations is that their
participants exchange data and/or assign workload in such a way as
to avoid duplication of effort whilst ensuring that data are
annotated and made available in a consistent way.

Biological databases store and organize biological data for easy
retrieval of information. These centralized resources contain DNA
and protein sequences, and their associated information.

Biological Databases
• These are the databases consisting of biological

data like protein sequencing, molecular structure,
DNA sequences, etc in an organized form.

• Several computer tools are there to manipulate the
biological data like an update, delete, insert, etc.
Scientists, researchers from all over the world enter
their experiment data and results in a biological
database so that it is available to a wider audience.

• Biological databases are free to use and contain a
huge collection of a variety of biological data.

Uses of biological Databases
• It helps the researchers to study the available data

and form a new thesis, anti-virus, helpful bacteria,
medicines, etc.

• It helps scientists to understand the concepts of
biological phenomena.

• The database acts as a storage of information.

• It helps remove the redundancy of data

Data type Collaboration

Nucleotide sequences International Sequence Database
Collaboration

Protein sequences UniProt Consortium

Macromolecular structures Worldwide Protein Data Bank

Molecular interactions The International Molecular
Exchange Consortium

Protein identifications The ProteomeXchange
Consortium

Genomic and clinical data Global Alliance for Genomics and
Health

Some examples of global collaborations established to manage
the public record of different biological data types

http://www.insdc.org/
http://www.uniprot.org/help/about
http://www.wwpdb.org/
http://www.imexconsortium.org/
http://www.proteomexchange.org/
http://genomicsandhealth.org/

Primary databases

In bioinformatics, and indeed in other data intensive
research fields, databases are often categorised as
primary or secondary. Primary databases are
populated with experimentally derived data such as
nucleotide sequence, protein sequence or
macromolecular structure. Experimental results are
submitted directly into the database by researchers,
and the data are essentially archival in nature. Once
given a database accession number, the data in
primary databases are never changed: they form part
of the scientific record.

Primary databases

• In bioinformatics, and indeed in other data
intensive research fields, databases are often
categorised as primary or secondary. Primary
databases are populated with experimentally
derived data such as nucleotide sequence, protein
sequence or macromolecular structure.
Experimental results are submitted directly into the
database by researchers, and the data are
essentially archival in nature. Once given a database
accession number, the data in primary databases
are never changed: they form part of the scientific
record.

Primary databases

Secondary databases

Secondary databases comprise data derived from the results of analyzing
primary data. They are often referred to as curated databases but this is a
bit of a misnomer because primary databases are also curated to ensure
that the data in them is consistent and accurate.

Secondary databases often draw upon information from numerous
sources, including other databases (primary and secondary), controlled
vocabularies (see later section) and the scientific literature. They are highly
curated, often using a complex combination of computational algorithms
and manual analysis and interpretation to derive new knowledge from the
public record of science.

Secondary databases have become the molecular biologist’s reference
library over the past decade or so, providing a wealth of (often daunting)
information on just about any gene or gene product that has been
investigated by the research community. The potential for mining this
information to make new discoveries is vast. It’s our job in this course to
reduce your activation energy to make more of these resources for your
research.

Essential aspects of primary and secondary
databases

Primary database Secondary database

Synonyms Archival database Curated database;
knowledgebase

Source of data Direct submission of
experimentally-derived
data from researchers

Results of analysis,
literature research and
interpretation, often of data
in primary databases

Examples ENA, GenBank and DDBJ (n
ucleotide
sequence) ArrayExpress an
d GEO (functional genomics
data) Protein Data
Bank (PDB; coordinates of
three-dimensional
macromolecular structures)

InterPro (protein families,
motifs and
domains) UniProt
Knowledgebase (sequence
and functional information
on
proteins) Ensembl (variatio
n, function, regulation and
more layered onto whole
genome sequences)

https://www.ebi.ac.uk/ena
http://www.ncbi.nlm.nih.gov/genbank/
http://www.ddbj.nig.ac.jp/
https://www.ebi.ac.uk/arrayexpress/
http://www.ncbi.nlm.nih.gov/geo/
https://www.ebi.ac.uk/pdbe/
https://www.ebi.ac.uk/interpro/
http://www.uniprot.org/help/uniprotkb
http://www.ensembl.org/

SWISS-PROT

• SWISS-PROT is a well-known and widely used secondary database
of protein sequences that provides detailed annotation, including
information on structure, function, and protein family assignment.

• The sequence data is primarily derived from the TrEMBL database,
which stores translated nucleic acid sequences.

• SWISS-PROT stands out from other protein databases for its
detailed annotations, minimal redundancy, and integration with
other databases.

• Annotations in SWISS-PROT provide detailed information on
protein function, post-translational modifications, domains and
sites, secondary and quaternary structure, similarities to other
proteins, diseases associated with deficiencies in the protein,
sequence conflicts, and variants.

• Swiss-Prot is popular for its low redundancy and high level of
integration with other databases.

PROSITE

• ProSite is a database of protein families, domains, and functional
sites that contains manually curated information on amino acid
patterns and profiles of proteins.

• It is a secondary protein database that provides tools for the
analysis of protein sequences and the identification of motifs.

• The database contains a large collection of signature patterns or
profiles that hold biological importance. Each signature is
associated with important biological information such as protein
family, domain, or functional site.

• ProSite uses two types of signatures, patterns and generalized
profiles, to identify conserved regions.

• These signatures can be used to predict the function and structure
of proteins and help in the annotation of new protein sequences.

Pfam

• Pfam is another secondary database of protein families and
domains that are represented by multiple sequence
alignments, profile hidden Markov models (HMMs), and
annotations.

• The database is accessible online and is used by researchers
worldwide for a variety of applications, including genome
annotation, protein classification, and protein structure
prediction.

• Pfam has two components. Pfam-A stores manually curated
high-quality entries. Pfam-B stores automatically generated
lower-quality entries.

• Pfam provides a platform for the analysis of protein
sequence data, which allows researchers to search for
related proteins in the database based on the presence of
specific protein domains.

PRINTS

• PRINTS database contains protein family
fingerprints which are groups of motifs.

• PRINTS is one of several widely-used pattern
databases, including PROSITE, BLOCKS, and Pfam,
each with different strengths and weaknesses.

• PRINTS uses a fingerprinting method that detects
distant relatives of large and highly divergent
protein superfamilies by exploiting conserved
regions within sequence alignments.

Applications of Secondary Databases

• Secondary databases can be used to predict the structure and
function of proteins by identifying homologous proteins with
known structures.

• Secondary databases contain functional annotation information
which helps to better understand the roles of proteins in different
organisms.

• Secondary databases also help to identify conserved regions
within a sequence, which can help to identify important functional
domains and motifs.

• Secondary databases also help in evolutionary analysis by
comparing protein sequences across different species to study the
evolution of proteins.

• Secondary databases can also be used to identify potential drug
targets by analyzing protein families and identifying conserved
motifs that are essential for protein function.

Composite Databases (Hybrid databases and
families of databases)

• The data entered in these types of databases are
first compared and then filtered based on desired
criteria.

• The initial data are taken from the primary
database, and then they are merged together based
on certain conditions.

• It helps in searching sequences rapidly. Composite
Databases contain non-redundant data.

Hybrid databases and families of databases

Many data resources have both primary and secondary
characteristics. For example, UniProt accepts primary sequences
derived from peptide sequencing experiments. However, UniProt
also infers peptide sequences from genomic information, and it
provides a wealth of additional information, some derived from
automated annotation (TrEMBL), and even more from careful
manual analysis (SwissProt).

Some databases have different ‘branches’ for primary and
secondary data. A good example of this is the ArrayExpress data
collection in BioStudies: ArrayExpress contains experimentally-
derived functional genomics data whereas the Expression Atlas uses
a subset of high-quality data from the ArrayExpress collection to
derive knowledge about gene expression patterns under different
conditions.

To learn more about some EMBL-EBI databases, try the online
tutorial A journey through bioinformatics: Explore resources from
EMBL-EBI.

Review Questions

• Explain the term biological database.

• Explain the difference between primary and
secondary databases.

• Give some examples of two types of databases.

Thank you for your
attention!

ON-LINE DISTANCE COURSE
ON DATABASES

❑Module 4. Biological Databases

❑ Topic 2. Primary and Secondary Databases of
Protein. 3D structure protein databases.

❑ Lesson 2. 3D structure protein databases

• Laskowski, R. A. (2011). Protein Structure
Databases. Molecular Biotechnology, 48(2), 183–
198.

• Berman, H. M. (January 2008). "The Protein Data
Bank: a historical perspective" (PDF). Acta
Crystallographica Section A. A64 (1): 88–95.

3D STRUCTURE PROTEIN DATABASES

Contents
• Introduction

• Terminology

• Atlases

• Examples of databases

Introduction
Back in 1971, when the Protein Data Bank (PDB) was
founded, there were only seven experimentally
determined protein 3D structures. The data for each,
including the proteins’ atomic coordinates, were stored
in simple, fixed-format text files. Any structural analysis
of these proteins usually required access to bulky and
expensive graphics computers.

Since then, the number of solved structures has
increased ten thousand-fold. The internet revolution has
helped by making access to, and display of, protein
structural data vastly easier and providing a greater level
of information content.

Terminology
‘Protein structure’ is a term that tends to be
somewhat loosely used.

A preferable term is ‘model’, as the 3D structures of
large molecules, such as proteins, are models of the
protein atoms’ locations (i.e. their x-, y-, z-
coordinates), their chemical types (e.g. oxygen,
nitrogen) and other parameters.

Atlases
At the simplest level are the sites that provide ‘atlas’
pages—one for every PDB entry—each containing
general information obtained from the relevant PDB
file. There are usually graphical representations of
the structural model together with links that provide
interactive 3D visualizations using java-based, or
other, viewers.

Atlases

The RCSB PDB

The RCSB’s web site (http://www.rcsb.org/pdb) is a
very rich source of information about each PDB entry
and can be a little overwhelming for novices. Hence
there are various tutorials, including a narrated one
using Flash, to help users get started.

The RCSB PDB -
atlas page

RCSB atlas page for PDB entry 1ayy, a
glycosylasparaginase showing the summary
information for this structural model
determined by X-ray crystallography at 2.32
Å resolution

At the top of each PDB entry’s summary page is shown the
primary literature citation for the entry, if there is one. The
citation usually refers to the authors’ description of the
structure determination experiment, analysis performed on
the resultant model and its biological significance. Next comes
a description of the molecules making up the structure that
was solved: protein chains, DNA fragments, ligand molecules,
etc. Also given are various details of the experiment, including
the organism from which the protein came and how it was
expressed. Additional annotations, with appropriate links to
the relevant databases are also given, including: the SCOP and
CATH fold classifications, constituent Pfam domains, and Gene
Ontology (GO) functional annotations. Text in bold blue
initiates a search for all other PDB entries having that text in
common (e.g. other entries with the same author name, or
species, or protein classification, etc.).

The RCSB PDB - Sequence details page

The Sequence details page which includes a
schematic diagram of the protein’s secondary
structure (showing a- and p-helices, b-sheets
and turns), together with any SCOP structural
domains. The 3D Similarity page allows you to
find other protein structural models that are
similar in overall fold to the current PDB entry.

The PDBe

The PDBe, formerly known as the Macromolecular
Structure Database (MSD), is the European branch of the
wwPDB. Its site provides an extensive set of search and
analysis tools that allow one to explore and mine the
structural data in the PDB (http://www.ebi.ac.uk/pdbe).

The atlas pages for each entry show the usual summary
information describing the structure and the
experimental details used to obtain it. Additional pages
provide information on the protein’s Primary, Secondary,
Tertiary and Quaternary structure (i.e. the probable
biological unit, as predicted by PISA), Experimental
method, Taxonomy information, Citation, Ligand and
Visualization.

The PDBe - The AstexViewerTM

OCA

OCA’s main difference from the other atlases is its linkage between
proteins and the diseases associated with them
(http://bip.weizmann.ac.il/oca-docs/oca-home.html). Its search form has a
few novel search options including gene name, function, disease and
membrane orientation (for membrane-spanning proteins).

PDBsum

This aims to be more
pictorial than the
other sites, illustrating
many of its structural
analyses by schematic
diagrams rather than
as tables of numbers
(https://www.ebi.ac.u
k/thornton-
srv/databases/pdbsum
/). Also, it allows users
to upload their own
PDB files and get a set
of password-protected
PDBsum pages
generated for them.

Pfam Domain Diagrams and Domain
Architecture Networks

Each entry’s summary page has a few useful features
not found in the other atlas sites. One of these is a
clickable schematic diagram showing how much of
the full-length protein sequence is actually
represented by the 3D structural model.

Secondary Structure and Topology Diagrams

A topology diagram taken from
PDBsum for the second domain of
chain A in PDB entry 3ib0: a
bovine lactoferrin. The diagram
illustrates how the β-strands,
represented by the block arrows,
join up, side-by-side, to form the
domain’s central β-sheet. The
diagram also shows the relative
locations of the α-helices, here
represented by cylinders. The
small arrow indicates the
directionality of the protein chain,
from the N- to the C-terminus.
The numbers within the
secondary structural elements
correspond to the residue
numbering given in the PDB file.

Intermolecular Interactions

LIGPLOT for PDB entry 2oiq,
tyrosine kinase c-Src, as given
in PDBsum showing the
interactions between the
bound molecule imatinib (a
drug, brand name gleevec)
with the residues of the
protein. Hydrogen bonds are
represented by dashed lines.
Residues that interact with
the ligand via non-bonded
contacts only are represented
by the eyelashes.

Intermolecular Interactions
Extracts from the protein–protein interaction
diagrams in PDBsum for PDB entry 1cow, bovine
mitochondrial F1-ATPase. a Thumbnail image of
the 3D structural model which contains seven
protein chains: three of ATPA1_BOVIN (chains A,
B and C), three of ATPB_BOVIN (chains D, E and
F) and a fragment of ATPG_BOVIN (chain G). b
Schematic diagram showing the interactions
between the chains. The area of each circle is
proportional to the surface area of the
corresponding protein chain. The extent of the
interface region on each chain is represented by
a coloured wedge whose colour corresponds to
the colour of the other chain and whose size
signifies the interface surface area. c A
schematic diagram showing the residue–residue
interactions across one of the interfaces, namely
that between chains D and G. Hydrogen bonds
and salt bridges are shown as solid lines, while
nonbonded contacts are represented by dashed
lines (Color figure online)

Homology model servers

Review Questions

• Explain the role of protein structure databases.

• Give some examples of protein structure
databases.

• What are the main features of such kind of
databases?

Thank you for your
attention!

ON-LINE DISTANCE COURSE
ON DATABASES

❑Module 4. Biological Databases

❑ Topic 3. Gene databases

❑ Lesson 1. Types of genome databases

• Carroll, M.L., Nguyen, S.V. and Batzer, M.A. (2001).
Genome Databases. In eLS, (Ed.).
https://doi.org/10.1038/npg.els.0003027

TYPES OF GENOME DATABASES

Contents
• Introduction

• Genome Data Management

• Genomic Databases

• Relational databases

• Object-oriented databases

• Commercial Databases

• Existing Genome Databases

Introduction
A genome database can be described as a repository of
DNA sequences from many different species of plants
and animals. They are linked to supportive databases to
aid in interpretation of the sequence data. Genome
databases are designed and maintained in the electronic
environment of one or several computers, using several
operating systems, software applications, file transfer
protocols and user interfaces.

Genome databases contain sequence data generated by
molecular biologists, geneticists and others using
techniques in the laboratory that enable determination
of the individual nucleotide order of a complete DNA
sequence.

Genome Data Management
Data Storage − Storing large volumes of genome data requires a combination of
scalable storage solutions and efficient data compression methods. Popular
storage solutions include cloud storage, distributed file systems, and relational
databases.

Data Quality Control − Quality control is essential for ensuring the accuracy and
reliability of genome data. This includes checking for errors in sequencing,
contamination, and data integrity.

Data Analysis − The complexity and diversity of genome data require a wide range
of analytical tools and methods. These include alignment tools, variant calling,
annotation, functional analysis, and visualization tools.

Data Integration − Integrating data from different sources and in different formats
is a major challenge in genome data management. This requires the use of
standard data formats, ontologies, and data integration tools.

Data Security − The sensitive nature of genome data requires strict security
measures to protect the privacy of research participants and to comply with
regulations. This includes data encryption, access controls, and data-sharing
policies.

Genomic Databases

Relational databases
Relational systems are best described as being
collections of joined tables as in an Excel or Lotus
program. A table consists of a fixed number of
columns or attributes and a variable number of rows
containing cells for single data entry that is relevant
to a particular attribute. Several tables of different
attributes can be made more useful by linking or
joining the cells in each table. In a relational
database system the rows of data are presumably
limited to the size and capacity of electronic storage
with the columns or attributes expandable to include
many different characteristics.

Object-oriented databases
The object-oriented method has proved highly successful in
programming applications. An object-oriented database can classify
data and use them as specific objects. These classes are arranged in
a hierarchical structure that can inherit attributes from higher
classes. In a biological system, we may have a class ‘experiment’
and a specialization of that class called ‘in situ hybridization
experiment’. This gives object-oriented databases flexibility and
extendibility – as genome mapping and sequencing evolves, classes
are extended to take into account changing methods and
techniques. Object-oriented databases are dynamic and can
combine various classes to draw ‘virtual’ conclusions and generate
an independent set of data. One can ask a ‘gene object’ to give its
sequence. Then ask a marker object to draw itself on a genetic map.
The modelling of classes controls the results of the application,
placing relatively few limitations on the operations.

Commercial Databases

In addition to the publicly accessible databases there
are a number of databases created by private
companies for pharmaceutical research and
development applications. A few of these companies
include:

• Incyte Genomics [http://www.incyte.com/],

• Myriad Genetics [http://www.myriad.com/], and

• Celera [http://www.celera.com/].

Existing Genome Databases

• Parasites and disease organisms

• Insects

• Plants

• Fish genomes

• Yeast genomes

• Mammalian genomes

• Humans

Nucleotide Databases

Biological databases store and organize biological
data for easy retrieval of information. These
centralized resources contain DNA and protein
sequences and their associated information.

Nucleotide databases are a type of biological
database containing genetic information, which
includes DNA and RNA sequences that come from a
variety of sources, including whole genomes,
transcriptomes, and individual genes.

Nucleotide Databases

International Nucleotide Sequence Database

The International Nucleotide Sequence Database
Collaboration (INSDC) is a group of three
organizations – GenBank, EMBL, and DDBJ – that
collect and share nucleotide sequence data.

GenBank

• GenBank is a sequence database that contains a
collection of annotated nucleic acid sequence data.

• It includes various types of genetic material, such
as genomic DNA, messenger RNA (mRNA),
complementary DNA (cDNA), expressed sequence
tags (ESTs), high-throughput raw sequence data,
and sequence polymorphisms.

European Molecular Biology Laboratory (EMBL)

• The European Molecular Biology Laboratory (EMBL)
is another nucleotide database, part of the INSDC.

• It is focused on the storage and distribution of
nucleotide and protein sequences.

• EMBL also develops tools to help researchers
analyze and interpret this data.

DNA Data Bank of Japan (DDBJ)

• he DNA Data Bank of Japan (DDBJ) is another
nucleotide database that exchanges data with
GenBank and EMBL as a member of INSDC.

• DDBJ collects and exchanges nucleotide sequence
data and manages bioinformatics tools for data
submission and retrieval. It also develops tools for
biological data analysis and organizes
Bioinformatics Training Courses in Japanese.

Genome Sequence Archive (GSA)

• The Genome Sequence Archive (GSA) is a database that stores raw
sequence data and is built based on INSDC data standards and
structures.

• GSA was developed to complement the existing INSDC member
databases and has now become an important tool for archiving
and managing the increasing amount of genomic data.

• GSA accepts raw sequence reads from various sequencing
platforms and stores both the sequence reads and metadata
submitted by researchers worldwide.

• GSA provides free and unrestricted access to all publicly available
data to scientific communities globally.

• GSA uses four primary data objects, namely BioProject, BioSample,
Experiment, and Run, to organize the submitted data.

Single Nucleotide Polymorphism database
(dbSNP)
• The Single Nucleotide Polymorphism database (dbSNP) is a public database that

contains information about variations in nucleotide sequences.

• It is a part of the National Center for Biotechnology Information (NCBI) and is a
public database that accepts entries from both public and private organizations.

• It stores a collection of genetic polymorphisms, including single nucleotide
substitutions, deletions or insertions, and microsatellite repeat variations.

• Each entry in dbSNP includes the sequence context of the polymorphism, the
occurrence frequency, and the experimental method used to detect the
variation.

• dbSNP is open to submissions for variations from any species and genome
location.

• The database supports a wide range of research areas, including physical
mapping, functional analysis, pharmacogenomics, association studies, and
evolutionary studies.

Nucleic Acid Database (NDB)

• The Nucleic Acid Database (NDB) is a collection of three-
dimensional nucleic acid structures and their complexes
obtained and curated from the Protein Data Bank (PDB).

• The database acts as a centralized platform for storing and
accessing structural information and annotations related to
nucleic acids.

• NDB includes annotations specific to the structure and
function of nucleic acids. It also provides tools that allow
users to search the database, download data and structures,
analyze nucleic acids, and learn more about them.

• The database includes RNA and DNA oligonucleotides with
two or more bases. It also includes protein-DNA and protein-
RNA structures.

Intermolecular Interactions
Extracts from the protein–protein interaction
diagrams in PDBsum for PDB entry 1cow, bovine
mitochondrial F1-ATPase. a Thumbnail image of
the 3D structural model which contains seven
protein chains: three of ATPA1_BOVIN (chains A,
B and C), three of ATPB_BOVIN (chains D, E and
F) and a fragment of ATPG_BOVIN (chain G). b
Schematic diagram showing the interactions
between the chains. The area of each circle is
proportional to the surface area of the
corresponding protein chain. The extent of the
interface region on each chain is represented by
a coloured wedge whose colour corresponds to
the colour of the other chain and whose size
signifies the interface surface area. c A
schematic diagram showing the residue–residue
interactions across one of the interfaces, namely
that between chains D and G. Hydrogen bonds
and salt bridges are shown as solid lines, while
nonbonded contacts are represented by dashed
lines (Color figure online)

Homology model servers

Review Questions

• Explain the role of genome databases.

• Give some examples of different types of genome
databases.

Thank you for your
attention!

ON-LINE DISTANCE COURSE
ON DATABASES

❑Module 4. Biological Databases

❑ Topic 3. Gene databases

❑ Lesson 2. Application of gene databases

• Xuhua Xia (2017) Bioinformatics and Drug Discovery.
Current Topics in Medicinal Chemistry, 17, 1709-1726

• Benjamin Goudey, Nicholas Geard, Karin Verspoor and
Justin Zobel (2022) Propagation, detection and
correction of errors using the sequence database
network. Briefings in Bioinformatics, 23(6), 1–12

• Van de Sande, B., Lee, J.S., Mutasa-Gottgens, E. et al.
(2023) Applications of single-cell RNA sequencing in
drug discovery and development. Nat Rev Drug Discov
22, 496–520. https://doi.org/10.1038/s41573-023-
00688-4

APPLICATION OF GENE DATABASES

Contents
• Introduction

• Applications of gene database

• Examples

Introduction
Nowadays researchers explored the uniqueness of DNA
sequencing to release the genetic code of numerous diverse
organisms to reveal he function of the every organ inside the
animal model. From the development of DNA researchers
attempted to find the sequencing of complete DNA of many
organisms, in some organisms and plants already the whole
DNA sequencing genome was established such as human,
mouse, rat, bacterial, and plant genomes. Form this findings
scientist conclude that the most of the biological functions are
genetically conserved within and between species, this
informs the by gaining the knowledge will helpful to
understand the more information about human genome.
Sequencing the genomes of diverse organisms brings the
greater the intellectual yield DNA sequencing provides
significant clue regarding the genes and proteins that are
obligatory to generate and sustain related species

Applications of gene database
• Nucleotide databases are used to identify the gene or the

function of a particular nucleotide sequence by comparing an
unknown sequence with the known sequences in the database.

• Nucleotide databases can be used to study and examine gene
expression by using the sequence information stored in the
databases.

• Nucleotide databases are also used to identify potential drug
targets and develop new therapies for genetic diseases.

• Nucleotide databases also help in identifying genetic variations
that may be linked to diseases, which ultimately helps in the
development of diagnostic tools and treatments.

• Nucleotide databases can be used in phylogenetic analysis to
analyze the evolutionary relationships between organisms, by
comparing and examining their DNA or RNA sequences.

Basic Local Alignment Search Tool (BLAST)

The Basic Local Alignment Search Tool (BLAST) finds
regions of similarity between sequences. The program
compares nucleotide or protein sequences and calculates
the statistical significance of matches. BLAST can be used
to infer functional and evolutionary relationships
between sequences as well as help identify members of
gene families.

There are several types of BLAST searches. NCBI's
WebBLAST offers four main search types
• BLASTn (Nucleotide BLAST): compares one or more

nucleotide query sequences to a subject nucleotide
sequence or a database of nucleotide sequences. This is
useful when trying to determine the evolutionary
relationships among different organisms.

• BLASTx (translated nucleotide sequence searched against
protein sequences): compares a nucleotide query sequence
that is translated in six reading frames (resulting in six
protein sequences) against a database of protein sequences.
Because blastx translates the query sequence in all six
reading frames and provides combined significance statistics
for hits to different frames, it is particularly useful when the
reading frame of the query sequence is unknown or it
contains errors that may lead to frame shifts or other coding
errors. Thus blastx is often the first analysis performed with
a newly determined nucleotide sequence..

There are several types of BLAST searches. NCBI's
WebBLAST offers four main search types
• tBLASTn (protein sequence searched against translated nucleotide

sequences): compares a protein query sequence against the six-frame
translations of a database of nucleotide sequences. Tblastn is useful for
finding homologous protein coding regions in unannotated nucleotide
sequences such as expressed sequence tags (ESTs) and draft genome
records (HTG), located in the BLAST databases est and htgs, respectively.
ESTs are short, single-read cDNA sequences. They comprise the largest
pool of sequence data for many organisms and contain portions of
transcripts from many uncharacterized genes. Since ESTs have no
annotated coding sequences, there are no corresponding protein
translations in the BLAST protein databases. Hence a tblastn search is
the only way to search for these potential coding regions at the protein
level. The HTG sequences, draft sequences from various genome
projects or large genomic clones, are another large source of
unannotated coding regions.

• BLASTp (Protein BLAST): compares one or more protein query
sequences to a subject protein sequence or a database of protein
sequences. This is useful when trying to identify a protein.

Sources of errors that affect sequence records,
categorized into three broad classes

Example of how a network perspective can help inform outlier detection. (A) A
collection of records, with the grey circles indicating records marked as
Caenorhabditis elegans, while the blue circles are marked as Homo sapien. The
lines indicate a sequence similarity between records greater than
95%. (B) Expanded network of records

Distribution of sequence identity between bacterial protein records from
GenBank that have annotated EC terms and their their nearest
experimentally validated sequence in UniProt. The black dashed line
highlights poor similarity (below 35%), with approximately 2 million
records falling bellow this threshold.

Nucleotide Databases

Biological databases store and organize biological
data for easy retrieval of information. These
centralized resources contain DNA and protein
sequences and their associated information.

Nucleotide databases are a type of biological
database containing genetic information, which
includes DNA and RNA sequences that come from a
variety of sources, including whole genomes,
transcriptomes, and individual genes.

Network-based anomaly detection

Network-based anomaly detection encompasses a range
of techniques to identify records that are different from
their local neighbours, varying from clique-analysis to
joint-matrix factorization. The approach also offers
opportunities to incorporate other sources of knowledge,
either making use of the existing manual biocuration
approaches in databases such as SwissProt, integrating
structured ontologies or knowledge from supporting
literature itself, thus integrating information from
PubMed articles with the sequence database network.
The flexibility of these network approaches and their
ability to combine a mixture of different knowledge
sources has the potential to enable powerful new tools to
detect records that can be f lagged as a suspect for
manual inspection.

Major types of high-throughput data and their key information relevant to
drug discovery. Metabolomic data belong to cheminformatics and are not
included.

Disease understanding

As most complex diseases involve multiple cell types,
SC (single-cell) resolution can significantly advance
disease understanding. ScRNA-seq captures
differences in cell-type composition and changes in
cellular phenotype that are characteristic of a
pathological state. Moreover, the unbiased view of
scRNA-seq can detect the presence of rare cell types
that drive pathobiology.

SC technologies are providing detailed knowledge of
underlying disease mechanisms, enabling the
investigation of novel therapeutic approaches.

Fundamentals of single-cell RNA sequencing

How single-cell sequencing can inform decisions across
the drug discovery and development pipeline

Computational methods used in single-cell data
analysis for drug discovery and development

Single-cell RNA sequencing in disease
understanding

Review Questions

• Explain the applications of gene databases.

• Give some examples of different applications of
gene databases.

Thank you for your
attention!

ON-LINE DISTANCE COURSE
ON DATABASES

❑Module 4. Biological Databases

❑ Topic 4. KEGG: Kyoto Encyclopedia of Genes and
Genomes – high-level functions and utilities of
the biological system

❑ Lesson 1. KEGG Database

• Minoru Kanehisa, Miho Furumichi, Mao Tanabe,
Yoko Sato and Kanae Morishima (2017) KEGG: new
perspectives on genomes, pathways, diseases and
drugs. Nucleic Acids Research, Vol. 45, Database
issue D353–D361

• Qiu, YQ. (2013). KEGG Pathway Database. In:
Dubitzky, W., Wolkenhauer, O., Cho, KH., Yokota, H.
(eds) Encyclopedia of Systems Biology. Springer,
New York, NY. https://doi.org/10.1007/978-1-4419-
9863-7_472

KEGG Database

Contents
• Introduction

• KEGG Database

• KCF (KEGG Chemical Function) Format

• Reactions

• KEGG Orthology

• Connecting the Chemical and Genetic
information

Introduction
KEGG is a database resource for understanding high-
level functions and utilities of the biological system,
such as the cell, the organism and the ecosystem,
from molecular-level information, especially large-
scale molecular datasets generated by genome
sequencing and other high-throughput experimental
technologies.

KEGG Database
• Started in 1995 as the Kyoto Encyclopedia of Genes and

• Genomes (KEGG) database project under the then ongoing

• Human Genome Program in Japan

• Original concept

➢create a reference knowledge base of metabolism and other
cellular processes from published literature

➢Why? use for biological interpretation of genome sequence data.

➢How? Create maps of metabolism and annotate with
information

➢Examples:

✓glycolysis → Map 1

✓citrate acid (TCA) cycle → Map 2

✓pentose phosphate pathway → Map 3

Glycolysis / Gluconeogenesis - Reference
pathway

Glycolysis is the process of converting glucose into pyruvate
and generating small amounts of ATP (energy) and NADH
(reducing power). It is a central pathway that produces
important precursor metabolites: six-carbon compounds of
glucose-6P and fructose-6P and three-carbon compounds of
glycerone-P, glyceraldehyde-3P, glycerate-3P,
phosphoenolpyruvate, and pyruvate [MD:M00001]. Acetyl-
CoA, another important precursor metabolite, is produced
by oxidative decarboxylation of pyruvate [MD:M00307].
When the enzyme genes of this pathway are examined in
completely sequenced genomes, the reaction steps of three-
carbon compounds from glycerone-P to pyruvate form a
conserved core module [MD:M00002], which is found in
almost all organisms and which sometimes contains operon
structures in bacterial genomes. Gluconeogenesis is a
synthesis pathway of glucose from noncarbohydrate
precursors. It is essentially a reversal of glycolysis with minor
variations of alternative paths [MD:M00003].

https://www.genome.jp/kegg-
bin/show_pathway?map=map00010&show_description=show

KEGG now
• Integrate Chemistry and Genomics where maps represent different

types of networks:

➢chemical networks of how small molecules are converted

✓Small molecules have molecular weight < 900 daltons, organic,
and regulate biological process

➢genomic network of how genome-encoded enzymes are connected
to catalyze consecutive reactions

• Maps link:

➢ Compounds – represented as circles

➢ Reactions –represented as boxes with two identifiers

✓ the reaction identifier (R number)

✓one or more KO identifiers (K numbers)

➢Yes, we can think of this as a graph, with nodes representing
compounds and edges representing reactions

Compounds
https://www.genome.jp
/dbget-bin/www_bget

Fields that explain or
link each entry

https://www.genome.jp/dbget-bin/www_bget

Mol Files

• List of atoms

• List of bonds

• 2D or 3D spatial coordinates

• Counts of the number of atoms and bonds

• Attributes associated with atoms (charge) or bonds
(dashes/wedged bonds,..)

• Attributes associated with an entire structure (e.g.
net charge)

Example Mol file for Pyruvate

Pros/Cons of Mol files?

Pros

• Descriptive

• 3D spatial info

• Bond info **

Cons

• Non-compact

• Missing H info

• Inefficient for search

• ? For computing bond
breaking energy

• Molecular properties like
hydrophobia, ..

• Chirality info is not sufficent?

• Amenable to transformation
operations

• Extendable

KCF (KEGG Chemical Function) Format

• Molecules are represented as graphs consisting of non-
hydrogen atoms as vertices and bonds as edges

• To encode the molecular environment, vertices (atoms)
of KCF are labeled by the 68 KEGG Atom types

➢three-letter labels of the KEGG atoms, such as “
C1a” meaning a methyl carbon, represent the
hierarchical classification of atom environments.

➢first, the second, and the third letters of the
labels are referred to as the “ atom species” , the
“ atom classes”, and the “ KEGG atoms”

KEGG Atom Types for C species

KEGG Atom Types for N

Full Listing of KEGG Atom Types

• http://www.genome.jp/kegg/reaction/KCF.html

• Detailed drawings:

Hattori, Masahiro, et al. "Development of a chemical
structure comparison method for integrated analysis
of chemical and genomic information in the
metabolic pathways." Journal of the American
Chemical Society 125.39 (2003): 11853-11865.

Reactions

• Reactions –represented in maps as boxes with identifiers

➢ EC numbers

➢ one or more KO identifiers (K numbers)

➢ the reaction identifier (R number)

• Reaction entry:

✓ Name

✓ Definition: Formula in english

✓ Equation

✓ Reaction Class (RC)

✓ Enzyme

✓ Pathway

✓ Orthology

✓ Other DBs

KEGG Orthology

• The KEGG Orthology (KO) system is a collection of
manually defined ortholog groups (KO entries) for all
proteins and functional RNAs that appear in the
KEGG pathway maps

• What is an ortholog?

➢Genes in different species evolved from a
common ancestral gene

➢Typically retain same function

➢Identification of orthologs allow prediction of
gene function

KEGG reaction classes

• Classify reactions based on chemical structure transformation pattern of
substrate-products pairs (reaction pairs, or RPAIRS)

• Transformation coded using an RDM (Reaction center, Difference, Match)
pattern

• Ex: Acetyl-CoA + L-Glutamate <=> CoA + N-Acetyl-L-glutamate

A reaction consists of multiple reactant pairs,

and the one that appears on the KEGG

metabolic pathway map is called the main pair

Currently, the reaction class is defined for each

unique RDM pattern or a unique combination

of RDM patters when more than one reaction

center is identified for a reactant pair.

Connecting the Chemical and Genetic
information

Review Questions

• Explain the main features of KEGG.

• Give some examples of using KEGG.

Thank you for your
attention!

ON-LINE DISTANCE COURSE
ON DATABASES

❑ Module 4. Biological Databases

❑ Topic 4. KEGG: Kyoto Encyclopedia of Genes and
Genomes – high-level functions and utilities of
the biological system

❑ Lesson 2. KEGG Software

• Minoru Kanehisa, Miho Furumichi, Mao Tanabe,
Yoko Sato and Kanae Morishima (2017) KEGG: new
perspectives on genomes, pathways, diseases and
drugs. Nucleic Acids Research, Vol. 45, Database
issue D353–D361

• Minoru Kanehisa and others, KEGG for integration
and interpretation of large-scale molecular data
sets, Nucleic Acids Research, Volume 40, Issue D1,
1 January 2012, Pages D109–D114,
https://doi.org/10.1093/nar/gkr988

KEGG Software

Contents
• Introduction

• Architecture of KEGG website

• KEGG modules

• Genome annotation in KEGG

• Genome comparison and combination

Introduction
KEGG is a database resource for understanding high-
level functions and utilities of the biological system,
such as the cell, the organism and the ecosystem,
from molecular-level information, especially large-
scale molecular datasets generated by genome
sequencing and other high-throughput experimental
technologies.

Architecture of KEGG website

BlastKOALA tools
BlastKOALA is the web server for automatic
annotation (KO assignment) of query amino acid
sequences followed by KEGG Mapper analysis for
inferring higher-level functions. The server makes full
use of the improvements made for the GENES and
KO databases, including the addition of the GENES
addendum category, the precise taxonomic
classification of GENES data and the improvement of
KO to sequence links. The taxonomic classification
was used to define ‘non-redundant’ GENES datasets
for BlastKOALA.

KEGG mapper tools
KEGG Mapper is a collection of KEGG mapping tools for
linking molecular objects (genes, proteins, metabolites and
glycans) to higher-level objects (pathways, modules,
hierarchies, taxonomy and diseases). Table 7 shows the
current list of KEGG mapping tools including the new Search
Disease tool. Two pathway mapping tools, Search Pathway
and Search&Color Pathway, were made available from the
beginning of the KEGG project, and they are still the most
widely used. The mapping of genes and proteins can be
made either in reference mode using KOs or in
organismspecific mode using gene identifiers, such as
human gene identifiers used to search against human
pathway maps. The three tools, Reconstruct Pathway,
Reconstruct Brite and ReconstructModule, acceptKOs only.
They are linked from the BlastKOALA and GhostKOALA
servers for interpretation of the KO assignment results.

KEGG pathway maps for non-small cell lung
cancer (hsa05223)

KEGG pathway maps for (B) EGFR tyrosine kinase
inhibitor resistance (hsa01521).

KEGG Mapper tools

KEGG modules

KEGG MODULE was originally introduced to define tighter functional units than
KEGG PATHWAY so that the pathway information in KEGG would be represented in
three resolutions: global maps (for metabolism), regular maps and modules.
Subsequently, the scope of KEGG MODULE has been extended and there are
currently four types of KEGG modules:

(i) pathway modules,

(ii) structural complexes,

(iii) functional sets and

(iv) signature modules.

The first three types of modules usually correspond to parts of KEGG pathway
maps and BRITE hierarchies. The signature module is a set of genes in the genome,
or perhaps in the transcriptome as well, that can be used as a marker for the
phenotype, such as pathogenicity and metabolic capacity. Each KEGG module is
defined by the combination of K numbers and associated with an automatically
generated module map according to the predefined notations: space delimited
items for pathway elements, comma separated items in parentheses for
alternatives, plus sign to define a complex and minus sign for an optional item.

Genome annotation in KEGG

The genome annotation in KEGG is essentially cross-species annotation, finding
orthologous genes in all available genomes for given K numbers, and is currently
performed as follows.

(i) Experimental evidence on known functions of genes and proteins is
organized in the KO database, which is created together with the KEGG
PATHWAY, BRITE and MODULE databases.

(ii) Gene catalogs of complete genomes are generated from RefSeq and other
public resources.

(iii) All pairs of genomes (gene catalogs) are compared by the SSEARCH program,
and the GFIT tables are generated detailing the information for each gene in
a genome about best-hit genes in all other genomes.

(iv) GFIT tables are continuously updated, and the automatic version of the
KOALA tool presents to human annotators a summary of discrepancies
between its K number assignment and the current annotation.

(v) Discrepancies are examined by annotators with the manual version of
KOALA and other tools such as for protein domains, ortholog tables and
gene clusters. We plan to incorporate KEGG modules into the KOALA
annotation procedure.

Genome comparison and combination

For the organisms (GENES, DGENES and EGENES) and
environmental samples (MGENES) available in KEGG, it is
now possible to map multiple data sets against KEGG
pathway maps and BRITE functional hierarchies. The user
interface may be found in the KEGG GENOME page, and
the result is displayed using multiple color coding. This
feature can be used, for example, to compare metabolic
capabilities of different organisms, to examine
complementarity of host–symbiont, host–pathogen and
host–microbiome relationships, and to examine
collective features of pangenomes. These tasks may be
applied to the user's own genomes by using KEGG
Mapper with preprocessing of K number assignment and
color specification.

Comparison of metabolic pathways reconstructed from the
complete genomes of Homo sapiens (hsa) and E. coli (eco)

Knowledge base extension

The mapping of disease and drug data from these databases is
now incorporated in the daily KEGG update procedure. First,
all known disease genes accumulated in KEGG DISEASE and all
known drug targets accumulated in KEGG DRUG are integrated
in the KEGG PATHWAY and BRITE databases. This is
accomplished by preparing binary relations, human gene
identifier to H number and human gene identifier to D
number, as query data sets and applying the Search&Color
Pathway and Search&Color Brite tools. The generated pathway
maps and BRITE hierarchy files are identified by the ‘hsadd’
prefix and the ‘_dd’ modifier, respectively. The mapping result
is displayed by coloring: pink when the gene is associated with
a disease and light blue when the gene product is a drug
target.

Disease/drug mapping is the process to map all known disease genes (pink)
and all known drug targets (light blue) against all KEGG pathway maps

Naming convention of KEGG molecular
networks

Molecular
network

Manually created Computationally generated

Reference Organism-specific Disease/drug Other

Metabolic
pathway

map00010 ko00010 hsa00010 hsadd00010

ec00010

rn00010

Non-metabolic
pathway

map02010 ko02010 hsa02010 hsadd02010

Gene/protein
brite

ko02000 hsa02000 hsa02000_dd

Non-gene/protein
brite

br08303 br08303_target

br08303_enzyme

Module M00001 hsa_M00001

Accessing KEGG

KEGG is made available at both the GenomeNet
website (http://www.genome.jp/kegg/) and the
KEGG website (http://www.kegg.jp/). The
GenomeNet site has been the primary site, but this
will change at the end of 2011. The KEGG site will
then be the primary site handling all database
update procedures, and the GenomeNet site will
become a mirror site.

Review Questions

• Explain the architecture of KEGG website.

• Give some examples of using KEGG.

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 5. Practice

❑ Topic 1. Introduction to the computer program MS
Access. Use of tables, subforms, filters and reports.

❑ Practical lesson 1. Basic concepts in databases.
Introduction to the computer program MS Access.

Practical lesson. Basic concepts in

databases. Introduction to the computer

program MS Access.

Joyce Cox, Joan Lambert.
Microsoft Access 2013 Step By
Step, Microsoft Press., 2013.

https://support.microsoft.com/en-us/access

What is a database?
• A database is a tool for collecting and organizing information.

Databases can store information about people, products,
orders, or anything else.

• Many databases start as a list in a word-processing program
or spreadsheet. As the list grows bigger, redundancies and
inconsistencies begin to appear in the data.

• The data becomes hard to understand in list form, and there
are limited ways of searching or pulling subsets of data out for
review. Once these problems start to appear, it's a good idea
to transfer the data to a database created by a database
management system (DBMS), such as MS Access.

What is a database?
• Tables are one of the types of database objects you work with

in Access.

• Other types include forms, queries, reports, macros, and
modules.

• Of these object types, only tables are used to store
information.

• The others are used to enter, manage, manipulate, analyze,
retrieve, or display the information stored in tables—in other
words, to make the information as accessible and therefore as
useful as possible.

What is a database?
• In its most basic form, a database is the electronic equivalent of an

organized list of information. Typically, this information has a
common subject or purpose, such as the list of employees shown in
the following table.

• This list is arranged in a table of columns and rows. Each column
represents a field—a specific type of information about an
employee: last name, first name, hire date, and so on. Each row
represents a record—all the information about a specific employee.

The real power of a
database isn’t in its ability
to store information; it is
in your ability to quickly
retrieve exactly the
information you want
from the database.

Introduction to MS Access

Introduction to MS Access

• The program window contains the following elements:

– Title bar. This bar across the top of the program window
displays the name of the active database and by default display
the path to the folder where it is stored. It also provides tools
for managing the program and the program window.

You can use the tools on the title bar to move and size the window, undo or redo
changes, save the database, and get help with the program. At the left end of the title
bar is the program icon, which you click to display commands to restore, move, size,

minimize, maximize, and close the program window. To the right of the Access icon is
the Quick Access Toolbar.

Introduction to MS Access

• The program window contains the following elements:

– Ribbon. Below the title bar, all the commands for working
with an Access database are represented as buttons in this
central location so that you can work efficiently with the
program.

Each tab of the ribbon contains a specific category of commands.

Introduction to MS Access

• The program window contains the following elements:

– Navigation pane. On the left side of the program window, the
Navigation pane displays lists of database objects. By default, it
displays all the objects in the database by type of object, but
you can filter the list by clicking the pane’s title bar and then
clicking the category or group of objects you want to display.
expand the groups in the list by clicking the chevrons in the
section bars..

KEYBOARD SHORTCUT Press F11 to display or hide the Navigation pane.

Introduction to MS Access

• The program window contains the following elements:

– Status bar. Across the bottom of the program window, this bar
displays information about the current database and provides
access to certain program functions. At the right end of the bar
is the View Shortcuts toolbar, which provides convenient
buttons for switching the view of the active database object.

The goal of all these user interface features is to make working in a database as
intuitive as possible. Commands for tasks you perform often are readily available,

and even those you might use infrequently are easy to find.

Introduction to MS Access

• Using MS Access, you can:

• Add new data to a database, such as a new

item in an inventory

• Edit existing data in the database, such as

changing the current location of an item

• Delete information, perhaps if an item is sold

or discarded

• Organize and view the data in different ways

• Share the data with others via reports, e-mail

messages, an intranet , or the Internet

Introduction to MS Access

• The following sections are short

descriptions of the parts of a typical

Access database.
• Tables

• Forms

• Reports

• Queries

• Macros

• Modules

Introduction to MS Access

• Tables
– A database table is similar in appearance to a spreadsheet, in

that data is stored in rows and columns. As a result, it is usually

quite easy to import a spreadsheet into a database table.

– To get the most flexibility out of a database, the data needs to be

organized into tables so that redundancies don't occur.

– For example, if you're storing information about employees, each

employee should only need to be entered once in a table that is

set up just to hold employee data.

– Data about products will be stored in its own table, and data

about branch offices will be stored in another table. This process

is called normalization.

Introduction to MS Access

• Tables
– Each row in a table is referred to as a record. Records are where

the individual pieces of information are stored. Each record

consists of one or more fields.

– Fields correspond to the columns in the table. For example, you

might have a table named "Employees" where each record (row)

contains information about a different employee, and each field

(column) contains a different type of information, such as first

name, last name, address, and so on.

– Fields must be designated as a certain data type, whether it's

text, date or time, number, or some other type.

Introduction to MS Access

• Forms
– Forms allow you to create a user interface in which you can

enter and edit your data.

– Forms often contain command buttons and other controls that

perform various tasks.

– You can create a database without using forms by simply editing

your data in the table datasheets.

– However, most database users prefer to use forms for viewing,

entering, and editing data in the tables.

– You can program command buttons to determine which data

appears on the form, open other forms or reports, or perform a

variety of other tasks.

Introduction to MS Access

• Forms

– For example, you might have a form named "Customer Form" in

which you work with customer data.

– The customer form might have a button which opens an order

form where you can enter a new order for that customer.

– Forms also allow you to control how other users interact with the

data in the database.

– For example, you can create a form that shows only certain fields

and allows only certain operations to be performed. This helps

protect data and to ensure that the data is entered properly.

Introduction to MS Access
• Reports

– Reports are what you use to format, summarize and present

data.

– A report usually answers a specific question, such as "How much

money did we receive from each customer this year?" or "What

cities are our customers located in?"

– Each report can be formatted to present the information in the

most readable way possible.

– A report can be run at any time, and will always reflect the

current data in the database.

– Reports are generally formatted to be printed out, but they can

also be viewed on the screen, exported to another program, or

sent as an attachment to an e-mail message.

Introduction to MS Access
• Queries

– Queries can perform many different functions in a database.

Their most common function is to retrieve specific data from the

tables.

– The data you want to see is usually spread across several tables,

and queries allow you to view it in a single datasheet.

– Also, since you usually don't want to see all the records at once,

queries let you add criteria to "filter" the data down to just the

records you want.

– Queries come in two basic varieties: select queries and action

queries. A select query simply retrieves the data and makes it

available for use.

Introduction to MS Access
• Queries

– You can view the results of the query on the screen, print it out,

or copy it to the clipboard. Or, you can use the output of the

query as the record source for a form or report.

– An action query, as the name implies, performs a task with the

data. Action queries can be used to create new tables, add data

to existing tables, update data, or delete data.

Introduction to MS Access
• Macros

– Macros in Access can be thought of as a simplified

programming language which you can use to add functionality

to your database.

– For example, you can attach a macro to a command button on a

form so that the macro runs whenever the button is clicked.

– Macros contain actions that perform tasks, such as opening a

report, running a query, or closing the database.

– Most database operations that you do manually can be

automated by using macros, so they can be great time-saving

devices.

Introduction to MS Access
• Modules

– Modules, like macros, are objects you can use to add functionality

to your database. Whereas you create macros in Access by

choosing from a list of macro actions, you write modules in the

Visual Basic for

– Applications (VBA) programming language. A module is a

collection of declarations, statements, and procedures that are

stored together as a unit.

– A module can be either a class module or a standard module. Class

modules are attached to forms or reports, and usually contain

procedures that are specific to the form or report they're attached

to.

– Standard modules contain general procedures that aren't

associated with any other object. Standard modules are listed

under Modules in the Navigation Pane, whereas class modules are

not.

Basic tasks for an Access desktop database

• Choose a template

– Access templates have built-in tables, queries, forms, and

reports that are ready to use. A choice of templates is the first

thing you’ll notice when you start Access, and you can search

online for more templates.

1.In Access click File > New.

2.Select a desktop database template and enter

a name for your database under File Name. (If

you don’t see a template that would work for

you, use the Search online templatesbox.)

3.You can either use the default location that

Access shows below the File Name box or click

the folder icon to pick one.

4.Click Create.

Basic tasks for an Access desktop database

• Choose a template

If Access displays a Login dialog box with

an empty list of users:

• Click New User.

• Fill in the User Details form.

• Click Save & Close.

• Select the user name you just

entered, and then click Login.

If Access displays a Security

Warning message in the message bar, and

you trust the source of the template,

click Enable Content. If the database

requires a login, log in again.

Basic tasks for an Access desktop database

• Create a new database

– If none of the templates fit your needs, you might start with a blank

desktop database.

• From Access, click New > Blank desktop database.

• Type a name for your database in the File Name box.

• You can either use the default location that Access shows below

the File Name box or click the folder icon to pick one.

• Click Create.

Basic tasks for an Access desktop database

• Create a new database

Basic tasks for an Access desktop database

• Add a table

– In a database, your information is stored in multiple

related tables. To create a table:

1.When you open your database for the first time,

you’ll see a blank table in Datasheet view where you

can add data. To add another table, click

the Create tab > Table. You can either start entering

data in the empty field (cell) or paste data from

another source like an Excel workbook.

2.To rename a column (field), double-click the column

heading, and then type the new name.

Basic tasks for an Access desktop database
• Tables

– A relational database like Access usually has several

related tables.

– In a well-designed database, each table stores data

about a particular subject, such as employees or

products.

– A table has records (rows) and fields (columns).

– Fields have different types of data, such as text,

numbers, dates, and hyperlinks.

1.A record: Contains specific data, like information about a particular
employee or a product.
2.A field: Contains data about one aspect of the table subject, such as
first name or e-mail address.
3.A field value: Each record has a field value. For example, Contoso, Ltd.
or someone@example.com.

Basic tasks for an Access desktop database
• Tables

– Tables and fields also have properties that you can set

to control their characteristics or behavior:

1. Table properties

2. Field properties

In an Access database,
table properties are
attributes of a table that
affect the appearance or
behavior of the table as
a whole. Table
properties are set in the
table's property sheet,
in Design view.

Basic tasks for an Access desktop database
• Tables

– Data types. Every field has a data type. A field's data

type indicates the kind of data that the field stores, such

as large amounts of text or attached files:

A data type is a field property, but it differs from other field properties as follows:

•You set a field's data type in the table design grid, not in the Field

Properties pane.

•A field's data type determines what other properties the field has.

•You must set a field's data type when you create the field.

Basic tasks for an Access desktop database
• Table relationships

– Although each table stores data about a different subject, tables in

an Access database usually store data about subjects that are

related to each other. For example, a database might contain:

• A customers table that lists your company’s customers and their

addresses.

• A products table that lists the products that you sell, including

prices and pictures for each item.

• An orders table that tracks customer orders.

– Because you store data about different subjects in separate tables,

you need some way to tie the data together so that you can easily

combine related data from those separate tables. To connect the

data stored in different tables, you create relationships. A

relationship is a logical connection between two tables that

specifies fields that the tables have in common.

Basic tasks for an Access desktop database
• Table relationships

– Fields that are part of a table relationship are called keys. A key usually consists of

one field, but may consist of more than one field. There are two kinds of keys:

• Primary key - A table can have only one primary key. A primary key consists

of one or more fields that uniquely identify each record that you store in the

table. Often, there is a unique identification number, such as an ID number, a

serial number, or a code, that serves as a primary key. For example, you might

have a Customers table where each customer has a unique customer ID number.

The customer ID field is the primary key of the Customers table. When a primary

key contains more than one field, it is usually composed of pre-existing fields

that, taken together, provide unique values. For example, you might use a

combination of last name, first name, and birth date as the primary key for a

table about people. For more information, see adding or changing a table’s

primary key.

• Foreign key - A table can also have one or more foreign keys. A foreign key

contains values that correspond to values in the primary key of another table.

For example, you might have an Orders table in which each order has a

customer ID number that corresponds to a record in a Customers table. The

customer ID field is a foreign key of the Orders table.

Basic tasks for an Access desktop database
• Table relationships

– The correspondence of values between key fields forms the basis of

a table relationship. You use a table relationship to combine data

from related tables. For example, suppose that you have a

Customers table and an Orders table. In your Customers table, each

record is identified by the primary key field, ID.

– To associate each order with a customer, you add a foreign key field

to the Orders table that corresponds to the ID field of the

Customers table, and then create a relationship between the two

keys. When you add a record to the Orders table, you use a value

for customer ID that comes from the Customers table. Whenever

you want to view any information about an order's customer, you

use the relationship to identify which data from the Customers

table corresponds to which records in the Orders table.

Basic tasks for an Access desktop database
• Table relationships

1. A primary key, identified by the key icon next to the field name.

2. A foreign key — note the absence of the key icon.

Basic tasks for an Access desktop database
• Benefits of using relationships

• Consistency - Because each item of data is recorded only once, in

one table, there is less opportunity for ambiguity or inconsistency.

For example, you store a customer's name only once, in a table

about customers, rather than storing it repeatedly (and potentially

inconsistently) in a table that contains order data.

• Efficiency - Recording data in only one place means you use less

disk space. Moreover, smaller tables tend to provide data more

quickly than larger tables. Finally, if you don't use separate tables

for separate subjects, you will introduce null values (the absence of

data) and redundancy into your tables, both of which can waste

space and impede performance.

• Comprehensibility - The design of a database is easier to

understand if the subjects are properly separated into tables.

• Plan your tables with relationships in mind

Еxercises
• The Northwind database is a sample database, designed to assist in learning and

demonstrations, etc. It demonstrates what an inventory/orders system might look
like for a mail order dry goods company.

• The Northwind sample database is based on a fictitious company called Northwind
Traders, which imports and exports specialty foods from around the world.

Using this database, please review the different parts (tables, forms, reports, queries,
etc.) of a typical Access database try to create new tables and forms.

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 5. Practice

❑ Topic 1. Introduction to the computer program MS
Access. Use of tables, subforms, filters and reports.

❑ Practical lesson 2. Use of tables and subforms. Using filters
and reports.

Practical lesson: Use of tables and

subforms. Using filters and reports.

Joyce Cox, Joan Lambert.
Microsoft Access 2013 Step By
Step, Microsoft Press., 2013.

https://support.microsoft.com/en-us/access

Introduction

• When you are working with relational data (related data
that is stored in separate tables), you often need to view
multiple tables or queries on the same form.

• For example, you might want to see customer data from
one table and information about customer orders from
another table at the same time.

• Subforms are a convenient tool for doing this, and MS
Access provides several ways to help you create
subforms quickly.

Using tables
• Tables are the core database objects. Their purpose is to store

information.

• The purpose of every other database object is to interact in
some manner with one or more tables. An

• Access database can contain thousands of tables, and the
number of records each table can contain is limited more by
the storage space available than by anything else.

• Every Access object has two or more views. For tables, the
two most common views are Datasheet view, in which you
can display and modify the table’s data, and Design view, in
which you can display and modify the table’s structure.

Using tables
• To open a table in Datasheet view, either double-click its

name in the Navigation pane, or right-click its name and then
click Open.

• To open a table in Design view, right-click its name and then
click Design View.

• When a table is open in Datasheet view, clicking the View
button in the Views group on the Home tab switches to
Design view; when it is open in Design view, clicking the
button switches to Datasheet view.

• You can also switch the view by clicking one of the buttons on
the View Shortcuts toolbar in the lower-right corner of the
program window.

Using tables
• Datasheet view displays the table’s data in columns (fields)

and rows (records). The first row contains column headings
(field names). In this format, the table is often simply referred
to as a datasheet.

Using tables
• Navigating within tables, adding records and

entering data.

– The bar at the bottom of the table contains several
commands to help you search or scroll through records, to
add a new record, to save a record and etc.:

Using tables
• Design view. On the View Shortcuts toolbar, click the Design

View button to display the according table structure in Design
view. Notice that the Design tool tab now appears on the
ribbon.

Datasheet view
displays the data
stored in the table,
whereas Design
view displays the
underlying table
structure.

About subforms

• A subforums is a form that is inserted in another
form.

• The primary form is called the main form, and the
form that is enclosed in form is called the subform.

• A form/subform combination is sometimes referred
to as a hierarchical form, a master/detail form, or a
parent/child form.

About subforms

• Subforms are especially effective when you want to
show data from tables or queries that have a one-to-
many relationship.

• A one-to-many relationship is an association
between two tables in which the primary key value
of each record in the primary table corresponds to
the value in the matching field or fields of many
records in the related table.

About subforms

• For example, you can create a form that displays
employee data, and contains a subform that displays
each employee's orders.

• The data in the Employees table is the "one" side of
the relationship.

• The data in the Orders table is the "many" side of the
relationship — each employee can have more than
one order.

About subforms

1. The main form shows data
from the "one" side of the
relationship.

2. The subform shows data
from the "many" side of the
relationship.

About subforms

• The main form and subform in this kind of form
are linked so that the subform displays only
records that are related to the current record in
the main form.

• For example, when the main form displays Nancy
Freehafer's information, the subform displays
only her orders.

• If the form and subform were unlinked, the
subform would display all the orders, not just
Nancy's.

About subforms

• The following table defines some of the
terminology that is associated with subforms:

Term Definition

Subform control The control that embeds a form into a

form. You can think of the subform control

as a "view" of another object in your

database, whether it is another form, a

table, or a query. The subform control

provides properties which allow you to link

the data displayed in the control to the

data on the main form.

Source Object property The property of the subform control that

determines what object is displayed in the

control.

About subforms
Datasheet A simple display of data in rows and

columns, much like a spreadsheet. The

subform control displays a datasheet when

its source object is a table or query, or

when its source object is a form whose

Default View property is set to Datasheet.

In these cases, the subform is sometimes

referred to as a datasheet or subdatasheet

instead of as a subform.

Link Child Fields property The property of the subform control that

specifies which field or fields in the

subform link the subform to the main form.

Link Master Fields property The property of the subform control that

specifies which field or fields on the main

form link the main form to the subform.

Create or add a subform
• Use the following table to determine which

procedure is most appropriate for your situation:
Scenario Recommended procedure

You want Access to create both a main

form and a subform, and to link the

subform to the main form.

Create a form that contains a subform

by using the Form Wizard

You want to use an existing form as the

main form, but you want Access to

create a new subform and add it to the

main form.

Add one or more subforms to an

existing form by using the Subform

Wizard

You want to use an existing form as the

main form, and you want to add one or

more existing forms to that form as

subforms.

Create a subform by dragging one form

onto another

Create a form that contains a subform by using
the Form Wizard

• This procedure creates a new form and subform
combination by using the Form Wizard:
1.On the Create tab, in the Forms group, click Form

Wizard.

2.On the first page of the wizard, in
the Tables/Queries drop-down list, select a table or
query. For this example, to create an Employees form
that displays orders for each employee in a subform,
we will select Table: Employees (the "one" side of the
one-to-many relationship).

Create a form that contains a subform by using
the Form Wizard

3. Double-click the fields that you want to include

from this table or query.

4. On the same page of the wizard, in

the Tables/Queries drop-down list, select

another table or query from the list. For this

example, we will select the Orders table (the

"many" side of the one-to-many relationship).

5. Double-click the fields that you want to include

from this table or query.

Create a form that contains a subform by using
the Form Wizard

6. When you click Next, assuming that you set up
the relationships correctly before you started
the wizard, the wizard asks How do you want
to view your data? — that is, by which table or
query. Select the table on the "one" side of the
one-to-many relationship. For this example, to
create the Employees form, we will click by
Employees. The wizard displays a small diagram
of a form. The page should resemble the
following illustration:

Create a form that contains a subform by using
the Form Wizard

The box in the lower portion of the form

diagram represents the subform.

Create a form that contains a subform by using
the Form Wizard

7. At the bottom of the wizard page, select Form with subform(s),
and then click Next.

8. On the What layout would you like for your subform? page,
click the layout option that you want, and then click Next. Both
layout styles arrange the subform data in rows and columns, but a
tabular layout is more customizable. You can add color, graphics,
and other formatting elements to a tabular subform, whereas a
datasheet is more compact, like the datasheet view of a table.

9. On the next page of the wizard, select a formatting style for the
form, and then click Next. If you chose Tabular on the previous
page, the formatting style you choose will also be applied to the
subform.

Add one or more subforms to an existing form
by using the SubForm Wizard

Use this procedure to add one or more subforms to an existing form. For

each subform, you can choose to have Access create a new form or use an

existing form as the subform.one for the subform itself:

1. Right-click the existing form in the Navigation Pane, and then click Design View.

2. On the Design tab, in the Controls group, click the down-arrow to display

the Controls gallery, and ensure that Use Control Wizards is selected.

3. On the Design tab, in the Controls group, click the Subform/Subreport button.

4. Click on the form where you want to place the subform.

5. Follow the directions in the wizard.

6. When you click Finish, Access adds a subform control to your form. If you chose to

have Access create a new form for the subform instead of using an existing form,

Access creates the new form object and adds it to the Navigation Pane.

Create a subform by dragging one form onto
another

Use this procedure if you want to use an existing form as a main form, and
you want to add one or more existing forms to that form as subforms:

1. In the Navigation Pane, right-click the form that you want to use as the main
form, and then click Layout View.

2. Drag the form that you want to use as the subform from the Navigation Pane
onto the main form.

3. Access adds a subform control to the main form and binds the control to the
form that you dragged from the Navigation Pane. Access also tries to link the
subform to the main form, based on the relationships that have been defined
in your database.

4. Repeat this step to add any additional subforms to the main form.

5. To verify that the linking was successful, on the Home tab, in the Views group,
click View, click Form View, and then use the main form's record selector to
advance through several records. If the subform filters itself correctly for each
employee, then the procedure is complete.

Open a subform in a new window in Design
view

If you want to make design changes to a subform while you are working on

its main form in Design view, you can open the subform in its own window:

1. Click the subform to select it.

2. On the Design tab, in the Tools group, click Subform in New Window.

Change the default view of a subform

When you add a subform to a form, the subform/subreport control displays

the subform according to the subform’s Default View property. This

property can be set to the following values:

• Single Form

• Continuous Forms

• Datasheet

• Split Form

When you first create a subform, this property may be set to Continuous

Forms or perhaps Single Form. However, if you set the Default

View property of a subform to Datasheet, then the subform will display as a

datasheet on the main form.

Change the default view of a subform

To set the Default View property of a subform:

1. Close any open objects.

2. In the Navigation Pane, right-click the subform and then

click Design View.

3. If the Property Sheet is not already displayed, press F4 to

display it.

4. In the drop-down list at the top of the Property Sheet,

make sure Form is selected.

5. On the Format tab of the Property Sheet, set the Default

View property to the view you want to use.

Reports in MS Access

• Reports offer a way to view, format, and summarize the information in
your Microsoft Access database.

• For example, you can create a simple report of phone numbers for all your
contacts, or a summary report on the total sales across different regions
and time periods.

• What can you do with a report?

A report is a database object that comes in handy when you want to present
the information in your database for any of the following uses:

• Display or distribute a summary of data.

• Archive snapshots of the data.

• Provide details about individual records.

• Create labels.

Reports in MS Access

Create a report in Access:

Step 1: Choose a record source

• The record source of a report can be a table, a named query, or an

embedded query. The record source must contain all of the rows and

columns of data you want display on the report.

– If the data is from an existing table or query, select the table or query

in the Navigation Pane, and then continue to Step 2.

– If the record source does not yet exist, do one of the following:

• Continue to Step 2 and use the Blank Report tool,

• Create the table(s) or query that contains the required data. Select

the query or table in the Navigation Pane, and then continue to Step

2.

Reports in MS Access

Create a report in Access:

Step 2: Choose a report tool

• The report tools are located on the Create tab of the ribbon, in the

Reports group. The following table describes the options:

Tool Description

Report Creates a simple, tabular report containing all of the fields in the

record source you selected in the Navigation Pane.

Report Design Opens a blank report in Design view, to which you can add the

required fields and controls.

Blank Report Opens a blank report in Layout view, and displays the Field List from

where you can add fields to the report

Report Wizard Displays a multiple-step wizard that lets you specify fields,

grouping/sorting levels, and layout options.

Labels Displays a wizard that lets you select standard or custom label sizes,

as well as which fields you want to display, and how you want them

sorted.

Reports in MS Access

Create a report in Access:

Step 3: Create the report

1. Click the button for the tool you want to use. If a wizard appears, follow the

steps in the wizard and click Finish on the last page.

Access displays the report in Layout view.

2. Format the report to achieve the looks that you want:

• Resize fields and labels by selecting them and then dragging the edges until

they are the size you want.

• Move a field by selecting it (and its label, if present), and then dragging it to

the new location.

• Right-click a field and use the commands on the shortcut menu to merge or

split cells, delete or select fields, and perform other formatting tasks.

Reports in MS Access

Example reports in MS Access

Filter data in a report

• When you view an Access report on the screen, you can apply

filters to zero in on the data you want to see.

• To filter data in a report, open it in Report view (right-click it

in the Navigation pane and click Report View). Then, right-

click the data you want to filter.

• For example, in a report listing all employees, you might want

to limit the report to employees whose last names start with

“L”:

1. Right-click any last name, and click Text Filters > Begins With.

Filter data in a report

Filter data in a report
• Enter “L” in the box that appears, and

click OK.

• Access applies the filter, and now you can
print the report with just that data.

Filter data in a report
• Toggle or clear filters

– On the Home tab, click the Toggle Filter button to
remove and reapply the filter as needed.

– If you close the report without explicitly clearing the
filters, Access remembers them and you can click
Toggle Filter again to reapply them next time you
open the report. This works even if you close and
reopen the database. However, if you click Home >
Advanced > Clear All Filters, Access clears the filters
completely and you’ll need to start from scratch next
time around.

Filter data in a report
• Save filters as a query
• If you have a lot of filters applied to a report, you might want

to save the filters as a query. Then you can use the query as
the data source for the current report or a new report, or just
run the query next time you want to see the data.

1. Apply the filters, and click Home > Advanced > Advanced
Filter/Sort.

Access creates a query that includes all the filters you’ve
applied. If you want to see other columns besides the filtered
columns in the query output, double-click them in the tables
to add them to the query grid.

2. Click Save, and enter a name for the query.

Еxercises
• The Northwind database is a sample database, designed to assist in learning and

demonstrations, etc. It demonstrates what an inventory/orders system might look
like for a mail order dry goods company.

• The Northwind sample database is based on a fictitious company called Northwind
Traders, which imports and exports specialty foods from around the world.

Test everything from this practical lesson with this database.

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 5. Practice

❑ Topic 2. Maintaining database changes. Ensuring
the reliability of information in the database.

❑ Practical lesson 1. Maintaining database changes

Practical lesson:

Maintaining database changes.

Joyce Cox, Joan Lambert.
Microsoft Access 2013 Step By
Step, Microsoft Press., 2013.

https://support.microsoft.com/en-us/access

Introduction

• A properly designed database provides you with access
to up-to-date, accurate information.

• Because a correct design is essential to achieving your
goals in working with a database, investing the time
required to learn the principles of good design makes
sense.

• In the end, you are much more likely to end up with a
database that meets your needs and can easily
accommodate change.

What is good database design?

• Certain principles guide the database design process. The first
principle is that duplicate information (also called redundant
data) is bad, because it wastes space and increases the
likelihood of errors and inconsistencies.

• The second principle is that the correctness and completeness
of information is important. If your database contains
incorrect information, any reports that pull information from
the database will also contain incorrect information.

• As a result, any decisions you make that are based on those
reports will then be misinformed.

What is good database design?

• A good database design is, therefore, one that:

– Divides your information into subject-based tables to reduce
redundant data.

– Provides Access with the information it requires to join the
information in the tables together as needed.

– Helps support and ensure the accuracy and integrity of your
information.

– Accommodates your data processing and reporting needs.

The design process
• The design process consists of the following steps:

– Determine the purpose of your database

This helps prepare you for the remaining steps.

– Find and organize the information required

Gather all of the types of information you might want to record in the database, such as
product name and order number.

– Divide the information into tables

Divide your information items into major entities or subjects, such as Products or Orders.
Each subject then becomes a table.

– Turn information items into columns

Decide what information you want to store in each table. Each item becomes a field, and is
displayed as a column in the table. For example, an Employees table might include fields
such as Last Name and Hire Date.

The design process
• The design process consists of the following steps:

– Specify primary keys

Choose each table’s primary key. The primary key is a column that is used to uniquely
identify each row. An example might be Product ID or Order ID..

– Set up the table relationships

Look at each table and decide how the data in one table is related to the data in other
tables. Add fields to tables or create new tables to clarify the relationships, as necessary.

– Refine your design

Analyze your design for errors. Create the tables and add a few records of sample data. See
if you can get the results you want from your tables. Make adjustments to the design, as
needed.

– Apply the normalization rules

Apply the data normalization rules to see if your tables are structured correctly. Make
adjustments to the tables, as needed.

Determining the purpose of your database

• It is a good idea to write down the purpose of the database on paper — its
purpose, how you expect to use it, and who will use it.

• For a small database for a home based business, for example, you might
write something simple like "The customer database keeps a list of
customer information for the purpose of producing mailings and reports.“

• If the database is more complex or is used by many people, as often
occurs in a corporate setting, the purpose could easily be a paragraph or
more and should include when and how each person will use the
database.

• The idea is to have a well developed mission statement that can be
referred to throughout the design process. Having such a statement helps
you focus on your goals when you make decisions.

Finding and organizing the required
information

• To find and organize the information required, start with your existing
information. For example, you might record purchase orders in a ledger or
keep customer information on paper forms in a file cabinet.

• Gather those documents and list each type of information shown (for
example, each box that you fill in on a form). If you don't have any existing
forms, imagine instead that you have to design a form to record the
customer information. What information would you put on the form?

• What fill-in boxes would you create? Identify and list each of these items.
For example, suppose you currently keep the customer list on index cards.
Examining these cards might show that each card holds a customers
name, address, city, state, postal code and telephone number. Each of
these items represents a potential column in a table.

Finding and organizing the required
information

• As you prepare this list, don’t worry about getting it perfect at first.
Instead, list each item that comes to mind. If someone else will be using
the database, ask for their ideas, too. You can fine-tune the list later.

• Next, consider the types of reports or mailings you might want to produce
from the database. For instance, you might want a product sales report to
show sales by region, or an inventory summary report that shows product
inventory levels.

• You might also want to generate form letters to send to customers that
announces a sale event or offers a premium. Design the report in your
mind, and imagine what it would look like. What information would you
place on the report? List each item. Do the same for the form letter and
for any other report you anticipate creating.

Finding and organizing the required
information

• Giving thought to the reports and mailings you might want to create helps
you identify items you will need in your database. For example, suppose
you give customers the opportunity to opt in to (or out of) periodic e-mail
updates, and you want to print a listing of those who have opted in. To
record that information, you add a “Send e-mail” column to the customer
table. For each customer, you can set the field to Yes or No.

Dividing the information into tables
• To divide the information into tables, choose the major entities, or

subjects. For example, after finding and organizing information for a
product sales database, the preliminary list might look like this:

The major entities shown here are
the products, the suppliers, the
customers, and the orders.
Therefore, it makes sense to start
out with these four tables: one for
facts about products, one for facts
about suppliers, one for facts about
customers, and one for facts about
orders.

Dividing the information into tables
• When you first review the preliminary list of items, you might be tempted

to place them all in a single table, instead of the four shown in the
preceding illustration. You will learn here why that is a bad idea. Consider
for a moment, the table shown here:

• In this case, each row contains information about both the product and its
supplier. Because you can have many products from the same supplier, the
supplier name and address information has to be repeated many times.
This wastes disk space. Recording the supplier information only once in a
separate Suppliers table, and then linking that table to the Products table,
is a much better solution.

Dividing the information into tables
• A second problem with this design comes about when you need to modify

information about the supplier. For example, suppose you need to change a
supplier's address. Because it appears in many places, you might accidentally
change the address in one place but forget to change it in the others.
Recording the supplier’s address in only one place solves the problem.

• When you design your database, always try to record each fact just once. If
you find yourself repeating the same information in more than one place, such
as the address for a particular supplier, place that information in a separate
table.

• Once you have chosen the subject that is represented by a table, columns in
that table should store facts only about the subject. For instance, the product
table should store facts only about products. Because the supplier address is a
fact about the supplier, and not a fact about the product, it belongs in the
supplier table.

Turning information items into columns
• To determine the columns in a table, decide what information you need to

track about the subject recorded in the table. For example, for the Customers
table, Name, Address, City-State-Zip, Send e-mail, Salutation and E-mail
address comprise a good starting list of columns.

• Each record in the table contains the same set of columns, so you can store
Name, Address, City-State-Zip, Send e-mail, Salutation and E-mail address
information for each record.

• For example, the address column contains customers’ addresses. Each record
contains data about one customer, and the address field contains the address
for that customer.

• Once you have determined the initial set of columns for each table, you can
further refine the columns.

Turning information items into columns
• For example, it makes sense to store the customer name as two separate

columns: first name and last name, so that you can sort, search, and index on
just those columns.

• Similarly, the address actually consists of five separate components, address,
city, state, postal code, and country/region, and it also makes sense to store
them in separate columns.

• If you want to perform a search, filter or sort operation by state, for example,
you need the state information stored in a separate column.

• You should also consider whether the database will hold information that is of
domestic origin only, or international, as well. For instance, if you plan to store
international addresses, it is better to have a Region column instead of State,
because such a column can accommodate both domestic states and the
regions of other countries/regions.

Specifying primary keys
• Each table should include a column or set of columns that uniquely

identifies each row stored in the table.

• This is often a unique identification number, such as an employee ID
number or a serial number. In database terminology, this information is
called the primary key of the table.

• Access uses primary key fields to quickly associate data from multiple
tables and bring the data together for you.

• You cannot have duplicate values in a primary key. For example, don’t use
people’s names as a primary key, because names are not unique. You
could easily have two people with the same name in the same table.

• A primary key must always have a value. If a column's value can become
unassigned or unknown (a missing value) at some point, it can't be used as
a component in a primary key.

Specifying primary keys
• You should always choose a primary key whose value will not change. In a

database that uses more than one table, a table’s primary key can be used
as a reference in other tables.

• If the primary key changes, the change must also be applied everywhere
the key is referenced.

• Using a primary key that will not change reduces the chance that the
primary key might become out of sync with other tables that reference it.

• Often, an arbitrary unique number is used as the primary key. For
example, you might assign each order a unique order number. The order
number's only purpose is to identify an order. Once assigned, it never
changes.

• If you don’t have in mind a column or set of columns that might make a
good primary key, consider using a column that has the AutoNumber data
type

Specifying primary keys
• When you use the AutoNumber data type, Access automatically assigns a

value for you. Such an identifier is factless; it contains no factual
information describing the row that it represents.

• Factless identifiers are ideal for use as a primary key because they do not
change.

• A primary key that contains facts about a row — a telephone number or a
customer name, for example — is more likely to change, because the
factual information itself might change.

1. A column set to the AutoNumber data

type often makes a good primary key. No

two product IDs are the same.

Specifying primary keys
• For the product sales database, you can create an AutoNumber column for

each of the tables to serve as primary key: ProductID for the Products
table, OrderID for the Orders table, CustomerID for the Customers table,
and SupplierID for the Suppliers table.

Specifying the type of data
• The data type restricts entries in that field to a specific type of data. For

example, if the data type is set to Number and you try to enter text,
Access refuses the entry and displays a warning.

• When setting the data type of a field in a table in Design view, you can
choose from the following types:

– Short Text: Use for text fields that require up to 255 alphanumeric characters.

– Long Text: Use for text fields that require up to 65,535 alphanumeric characters.

– Number: Use for numeric values. The size of the entry is controlled by the Field Size

– Property.

– Date/Time: Use for dates in the years from 100 through 9999. Dates and times can be
expressed in a variety of formats.

– Currency: Use for decimal values with up to 15 digits to the left of the decimal point and
up to 4 digits to the right.

Specifying the type of data
• When setting the data type of a field in a table in Design view, you can

choose from the following types:

– AutoNumber: Use when you want Access to assign a unique number to each new
record. If you delete a record, its AutoNumber value is not reused, and remaining
records are not updated.

– Yes/No: Use for fields that can have only two possible mutually exclusive values, such as
True or False.

– OLE Object: Use to hold a graphic or object such as a Microsoft Excel worksheet or
Microsoft Word document.

– Hyperlink: Use to hold a clickable path to a folder on your hard disk, a network location,
or a website.

– Attachment: Use to attach a file to a record in the same way that you might attach a file
to an email message.

– Calculated: Use to hold the results of a calculation based on other fields in the same
table.

Specifying the type of data

Creating the table relationships
• Now that you have divided your information into tables, you need a way to

bring the information together again in meaningful ways. For example, the
following form includes information from several tables.

1. Information in this form comes

from the Customers table...

2. ...the Employees table...

3. ...the Orders table...

4. ...the Products table...

5. ...and the Order Details table.

Access is a relational database management system. In a relational database, you divide your

information into separate, subject-based tables. You then use table relationships to bring the

information together as needed.

Creating a one-to-many relationship
• Consider this example: the Suppliers and Products tables in the product

orders database. A supplier can supply any number of products. It follows
that for any supplier represented in the Suppliers table, there can be many
products represented in the Products table. The relationship between the
Suppliers table and the Products table is, therefore, a one-to-many
relationship.

To represent a one-to-many relationship in
your database design, take the primary key on
the "one" side of the relationship and add it as
an additional column or columns to the table
on the "many" side of the relationship. In this
case, for example, you add the Supplier ID
column from the Suppliers table to the
Products table. Access can then use the
supplier ID number in the Products table to
locate the correct supplier for each product.

Creating a one-to-many relationship
• The Supplier ID column in the Products table is called a foreign key. A

foreign key is another table’s primary key. The Supplier ID column in the
Products table is a foreign key because it is also the primary key in the
Suppliers table.

• You provide the basis for joining related tables by establishing pairings of
primary keys and foreign keys.

Creating a many-to-many relationship
• Consider the relationship between the Products table and Orders table.

• A single order can include more than one product. On the other hand, a
single product can appear on many orders. Therefore, for each record in
the Orders table, there can be many records in the Products table. And for
each record in the Products table, there can be many records in the Orders
table.

• This type of relationship is called a many-to-many relationship because for
any product, there can be many orders; and for any order, there can be
many products. Note that to detect many-to-many relationships between
your tables, it is important that you consider both sides of the
relationship.

• The answer is to create a third table, often called a junction table, that
breaks down the many-to-many relationship into two one-to-many
relationships. You insert the primary key from each of the two tables into
the third table. As a result, the third table records each occurrence or
instance of the relationship.

Creating a many-to-many relationship
In the product sales database, the Orders

table and the Products table are not related

to each other directly. Instead, they are

related indirectly through the Order Details

table. The many-to-many relationship

between orders and products is represented

in the database by using two one-to-many

relationships:

• The Orders table and Order Details

table have a one-to-many relationship.

Each order can have more than one line

item, but each line item is connected to

only one order.

• The Products table and Order Details

table have a one-to-many relationship.

Each product can have many line items

associated with it, but each line item

refers to only one product.

Creating a many-to-many relationship

• From the Order Details table, you can determine all of the
products on a particular order. You can also determine all of
the orders for a particular product.

• After incorporating the Order Details table, the list of tables
and fields might look something like this:

Creating a one-to-one relationship

• Another type of relationship is the one-to-one relationship. For
instance, suppose you need to record some special supplementary
product information that you will need rarely or that only applies to
a few products.

• Because you don't need the information often, and because storing
the information in the Products table would result in empty space
for every product to which it doesn’t apply, you place it in a
separate table.

• Like the Products table, you use the ProductID as the primary key.
The relationship between this supplemental table and the Product
table is a one-to-one relationship.

• For each record in the Product table, there exists a single matching
record in the supplemental table. When you do identify such a
relationship, both tables must share a common field.

Creating a one-to-one relationship

• When you detect the need for a one-to-one relationship in your
database, consider whether you can put the information from the
two tables together in one table. If you don’t want to do that for
some reason, perhaps because it would result in a lot of empty
space, the following list shows how you would represent the
relationship in your design:
– If the two tables have the same subject, you can probably set up the

relationship by using the same primary key in both tables.
– If the two tables have different subjects with different primary keys,

choose one of the tables (either one) and insert its primary key in the
other table as a foreign key.

Determining the relationships between tables helps you ensure that
you have the right tables and columns. When a one-to-one or one-to-
many relationship exists, the tables involved need to share a common
column or columns. When a many-to-many relationship exists, a third

table is needed to represent the relationship.

Refining the design

• Once you have the tables, fields, and relationships you need,
you should create and populate your tables with sample data
and try working with the information: creating queries, adding
new records, and so on.

• Doing this helps highlight potential problems — for example,
you might need to add a column that you forgot to insert
during your design phase, or you may have a table that you
should split into two tables to remove duplication.

• See if you can use the database to get the answers you want.
Create rough drafts of your forms and reports and see if they
show the data you expect. Look for unnecessary duplication
of data and, when you find any, alter your design to eliminate
it.

Applying the normalization rules

• You can apply the data normalization rules (sometimes just called
normalization rules) as the next step in your design. You use these rules to
see if your tables are structured correctly. The process of applying the
rules to your database design is called normalizing the database, or just
normalization.

• Normalization is most useful after you have represented all of the
information items and have arrived at a preliminary design. The idea is to
help you ensure that you have divided your information items into the
appropriate tables. What normalization cannot do is ensure that you have
all the correct data items to begin with.

• You apply the rules in succession, at each step ensuring that your design
arrives at one of what is known as the "normal forms." Five normal forms
are widely accepted — the first normal form through the fifth normal
form. This article expands on the first three, because they are all that is
required for the majority of database designs.

Еxercises
• The Northwind database is a sample database, designed to assist in learning and

demonstrations, etc. It demonstrates what an inventory/orders system might look
like for a mail order dry goods company.

• The Northwind sample database is based on a fictitious company called Northwind
Traders, which imports and exports specialty foods from around the world.

Review and test everything from this practical lesson with this database. Please,
discover different types of relationships between tables.

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 5. Practice

❑ Topic 2. Maintaining database changes. Ensuring
the reliability of information in the database.

❑ Practical lesson 2. Ensuring the reliability of information in
the database

Practical lesson: Ensuring the

reliability of information in the

database.

Joyce Cox, Joan Lambert.
Microsoft Access 2013 Step By
Step, Microsoft Press., 2013.

https://support.microsoft.com/en-us/access

Introduction

• Data is arguably the most important asset that one
organization has.

• The database is a key part of every organization’s
infrastructure, and if it goes down, it can create major
problems.

• Data is key for handling daily activities and for making short
and long-term decisions.

• For an organization to run effectively and efficiently, it needs
to have a reliable database.

• Database reliability is defined broadly to mean that the
database performs consistently without causing problems.

Introduction
• For data to be considered reliable, there must be:

– Data integrity, which means that all data is the database is
accurate and that there is consistency throughout data. Data
consistency is defined broadly to include the type and amount
of data.

– Data safety, which means that only authorized individuals
access the database. Data security also includes preventing any
type of data corruption and ensuring that data is always
accessible.

– Data recoverability, which means there are effective procedures
in place to recover any lost data. This is a key to database
reliability, ensuring that even if other safety measures fail, there
is a system for recovering data.

Decide whether to trust a database
• By default, Access disables all the potentially unsafe code or other

components in a database, regardless of the version of Access that you
used to create the database.

• When Access disables content, it informs you of the action by displaying
the Message Bar.

• If you see the Message Bar, you can choose whether to trust the disabled
content in the database. If you decide to trust the disabled content, you
can do so in two ways:

– Use the Message Bar: Click Enable Content on the Message Bar. When
you choose this option, you may need to repeat the procedure if the
database changes.

– Trust the database permanently: Place the database in a trusted
location — a folder on a drive or network that you mark as trusted.

Factors to consider when deciding whether to
trust a database

• Before you decide whether to trust a database, you should consider the
following factors:

– Your own security policy: You or your company may have a security policy in place that
specifies how to handle Access database files. For example, you might have a very
robust backup system in place, and decide that you are willing to trust most database
files, unless you have a specific reason not to. Conversely, you may not have a good
backup system, and therefore might want to be very cautious when you decide whether
to trust a database.

– Your goal: When Access disables content in a database that you have not trusted, it does
not block your access to the data in that database. If you want to review the data in a
database and do not want to perform any actions that might be unsafe, such as running
an action query or using certain macro actions, you do not have to trust the database. If
you are not sure whether an action is considered unsafe, you can try to perform the
action while the database content has been blocked by disabled mode. If the action is
potentially unsafe, it will be blocked in this circumstance.

Factors to consider when deciding whether to
trust a database

• Before you decide whether to trust a database, you should consider the
following factors:

– The database source: If you created the database, or if you know that it came from a
source that you trust, you can decide to trust the database. If the database came from a
possibly unreliable source, you might want to leave the database untrusted until you
make sure that its content is safe.

– The contents of the database file: If you cannot make a trust decision based on other
information, you might consider thoroughly examining the database contents to see
what potentially unsafe content the database might contain. After you conduct a
complete check and are sure that the content is safe, you can decide to trust the
database.

– The security of the location where the database is stored: Even if you know that the
contents of a database file are safe, if the file is stored in a location that is not fully
secure, someone might introduce unsafe content into the database. You should be
careful when deciding to trust database files that are stored in locations that might not
be secure.

Ways to share an Access desktop database
• There are several ways that you can share an Access database depending

on your needs and resource availability.

• Database applications change and grow over time. Many factors impact
needs and performance including the number of concurrent users, the
network environment, throughput, latency, the size of the database, peak
usage times, and expected growth rates. In short, if your database solution
is successful, it probably needs to evolve. Fortunately, Access has an
evolutionary path, from simple to advanced, that you can take over time
to effectively scale your solution. The following table summarizes Access
scenarios and workloads to help you choose that path.

Ways to share an Access desktop database
Share a single database

• This is the simplest option and has the least requirements, but also
provides the least functionality.

• In this method, the database file is stored on a shared network drive, and
all users share the database file simultaneously.

• Some limitations include reliability and availability if there are multiple
simultaneous users changing data since all database objects are shared.

• This technique can also reduce performance as all the database objects
are sent across the network.

• This option might work for you if only a few people are expected to use
the database at the same time and users don’t need to customize the
design of the database. But this method is less secure than other methods
of sharing a database, because each user has a full copy of the database
file, increasing the risk of unauthorized access.

Ways to share an Access desktop database
Share a single database

• Make sure that Access is set to open in shared mode on all of the users'
computers. This is the default setting, but you should check to be sure — if
a user opens the database in exclusive mode, it will interfere with data
availability.

a. Start Access and under File, click Options.

b. In the Access Options box, click Client Settings.

c. In the Advanced section, under Default open mode, select Shared, click OK,

and then exit Access.

• Copy the database file to the shared folder. After you copy the file, make
sure that the file attributes are set to allow read/write access to the
database file. Users must have read/write access to use the database.

• On each user's computer, create a shortcut to the database file.

Ways to share an Access desktop database
Share a split database

• This is a good choice if you do not have a SharePoint site or a database
server.

• You can share a split database over a Local Area Network (LAN).

• When you split a database, you reorganize it into two files — a back-end
database that contains the data tables, and a front-end database that
contains all the other database objects such as queries, forms, and
reports.

• Each user interacts with the data by using a local copy of the front-end
database.

• The benefits of splitting a database include the following:

– Improved performance: Only the data is shared across the network not the tables,
queries, forms, reports, macros and modules.

Ways to share an Access desktop database
Share a split database

• The benefits of splitting a database include the following:

– Greater availability: Database transactions such as record edits are completed more
quickly.

– Enhanced security: Users access the back-end database through linked tables; it is less
likely that intruders can obtain unauthorized access to the data via the front-end
database.

– Improved reliability: If a user encounters a problem and the database closes
unexpectedly, any database file corruption is usually limited to the copy of the front-end
database that the user had open.

– Flexible development environment: Each user can independently develop queries,
forms, reports, and other database objects without affecting other users. You can also
develop and distribute a new version of the front-end database without disrupting
access to the data that is stored in the back-end database.

Ways to share an Access desktop database
Share data by using a database server

• You can use Access with a database server product such as SQL Server to
share your database. This method offers you many benefits, but does
require additional software — a database server product.

• This method is similar to splitting a database because the tables are stored
on the network, and each user has a local copy of an Access database file
that contains links to the tables, along with queries, forms, reports, and
other database objects.

• Benefits of this sharing method depends on the database server software
that you use, but generally include user accounts and selective access to
data, excellent data availability, and good integrated data management
tools.

• Moreover, most database server software works well with earlier versions
of Access, so not all your users must use the same version.

Ways to share an Access desktop database
Share data by using a database server

• Benefits of sharing a database by using a database server:

– High performance and scalability: In many situations, a database server offers better
performance than an Access database file alone. Many database server products also
provide support for very large, terabyte-sized databases, approximately 500 times the
current limit for an Access database file (two gigabytes). Database server products
generally work very efficiently by processing queries in parallel and minimizing
additional memory requirements when more users are added.

– Increased availability: Most database server products allow you to back up your
database while it is in use. Consequently, you do not have to force users to exit the
database to back up data. Moreover, database server products usually handle
concurrent editing and record-locking very efficiently.

– Improved security: No database can be made completely secure. However, database
server products offer robust security that will help protect your data from unauthorized
use. Most database server products offer account-based security, allowing you to specify
who can see which tables. Even in the event that the Access front-end is improperly
obtained, unauthorized use of data is prevented by account-based security.

Ways to share an Access desktop database
Share data by using a database server

• Benefits of sharing a database by using a database server:

– Automatic recoverability: In case of system failure (such as an operating system crash or
power outage), some database server products have automatic recovery mechanisms
that recover a database to the last state of consistency in a matter of minutes, with no
database administrator intervention.

– Server-based processing: Using Access in a client/server configuration helps reduce
network traffic by processing database queries on the server before sending results to
the client. Having the server do the processing is usually more efficient, especially when
working with large data sets.

– Azure SQL Server: In addition to the benefits of SQL Server, offers dynamic scalability
with no downtime, intelligent optimization, global scalability and availability, elimination
of hardware costs, and reduced administration.

Protect databases
• Database protection takes two forms: ensuring that the database’s data is

secure, and ensuring that its data is available and useable.

• The need for database security is an unfortunate fact of life. As with your
house, car, office, or briefcase, the level of security required for your database
depends on the value of what you have and whether you are trying to protect it
from curious eyes, accidental damage, malicious destruction, or theft.

• The security of a company’s business information can be critical to its survival.
For example, you might not be too concerned if a person gained unauthorized
access to your products list, but you would be very concerned if a competitor
managed to obtain your customer list. And the destruction or deletion of your
critical order information would be a disaster.

• Your goal is to provide adequate protection without imposing unnecessary
restrictions on the people who need access to your database. In addition to
ensuring that a database is secure, you need to ensure that it is well
maintained.

Assigning passwords to databases
• You can keep unauthorized users out of a database by assigning it a password.

Access then prompts anyone attempting to open the database for the
password, and opens it only if the password is correct.

• To assign a password to or remove a password from a database, you must first
open the database for exclusive use, meaning that no one else can have the
database open. This will not be a problem for a database stored on your own
computer and used only by you, but if you want to set or remove a password for
a database that is located on a network, you will first need to make sure nobody
else is using it.

• You can use any word or phrase as a database password, but to create a secure
password, keep the following in mind:

– Passwords are case sensitive

– You can include letters, accented characters, numbers, spaces, and most punctuation

– marks.

– A good password includes uppercase letters, lowercase letters, and symbols or numbers, and
isn’t a word found in a dictionary.

Assigning passwords to databases
• Assigning a password to a database has an important secondary benefit. A

database created in Access is a binary file (a file that stores instructions and
data in such a way that it can usually be understood only by a computer).

• If you open the file in a word processor or a text editor, its content is mostly
unreadable, but if you look closely enough at the file, you can discover quite a
bit of information.

• It is unlikely that enough information will be exposed to allow anyone to steal
anything valuable. However, people can and do scan files with computer tools
designed to look for key words that lead them to restricted information.

• When you assign a password to a database, the database is automatically
encrypted each time it is closed, making it more unreadable.

• Opening the file in Access with the correct password decrypts the file and
makes its data readable again.

Assigning passwords to databases
• With Access running but no database open, display the Open page of the

Backstage view.

• Select your database and then click the Open arrow, and in the list, click Open
Exclusive.

Assigning passwords to databases
• Click Encrypt with Password to open the Set Database Password dialog box.

• In the Password box, your password, and then press the Tab key.

• In the Verify box, enter your password again! Then click OK. A message box
warns that row-level locking will be ignored.

• Click OK to close the message box, and then close the database without exiting

• Access.

Assigning passwords to databases
• Now if you try to open the database. Instead of displaying the Home Page

navigation form, Access opens the Password Required dialog box.

• In the Enter database password box, enter your password, and click OK.

• If you enter incorrect password Access show:

Preventing database problems
• Normal database use can cause the internal structure of any database in any

database program to become fragmented, sometimes resulting in a bloated file
and inefficient use of disk space.

• Fortunately, Access monitors the condition of database files as you open and
work with them, but you still need to pay attention, particularly if the
performance of the database seems slow or erratic.

• You can take a variety of steps to help keep an Access database healthy and
running smoothly. Your first line of defense against damage or corruption in any
kind of file is to back it up.

• Database files can rapidly become very large, so you need to choose an
appropriate place to store a backup copy, such as a DVD, another computer on
your network, or removable media such as a USB flash drive or external hard
disk.

Preventing database problems
• In addition to regularly backing up the database, you can use the following

Access utilities to keep it running smoothly:

• Compact and Repair Database: Optimizes performance by rearranging how the
file is stored on your hard disk, and then attempts to repair any corruption in
tables, forms, and reports.

• Database Documenter: Produces a detailed report that contains enough
information to rebuild the database structure if necessary.

• Analyze Performance: Analyzes the objects in the database and offers three types
of feedback: ideas, suggestions, and recommendations. You can instruct Access to
optimize the file by following through on any of the suggestions or
recommendations.

• Analyze Table: Tests database tables for compliance with standard database
design principles, suggests solutions to problems, and implements those solutions
at your request.

Preventing database problems
• Open the database file, and then follow the steps:

1. Close any open database objects, and then display the Save As page of the
Backstage view.

2. In the Advanced area of the right pane, double-click Back Up Database.

3. In the Save As dialog box click Save, which creates a copy of the database with the
current date appended to the file name in the specified folder.

4. Display the Info page of the Backstage view, and then click Compact & Repair
Database.

5. Close any open database objects, and then in the Forms area of the Navigation
pane, click Home Page.

6. On the Database Tools tab, in the Analyze group, click the Analyze Performance
button to open the Performance Analyzer dialog box. Notice that each type of
database object is represented by a page, and there are also pages for all objects
and for the database as a whole.

Preventing database problems
• Open the database file, and then follow the steps:

6. On the Database Tools tab, in the Analyze group, click the Analyze Performance button to
open the Performance Analyzer dialog box. Notice that each type of database object is
represented by a page, and there are also pages for all objects and for the database as a whole.

Preventing database problems
• Open the database file, and then follow the steps:

7. Click the All Object Types tab, click Select All, and then with the check boxes for all the objects
in the database selected, click OK to start the analyzer.

Preventing database problems
• Open the database file, and then follow the steps:

8. Click each entry in turn, and read the information in the Analysis Notes area.

9. Close the Performance Analyzer dialog box. Finally, let’s create a report of the structure of the
database.

10. On the Database Tools tab, in the Analyze group, click the Database Documenter button to
open the Documenter dialog box. Notice that this dialog box is identical to the Performance
Analyzer dialog box, with a page for each type of object the utility can document and a page
for all the existing database objects.

11. Click the Tables tab, and then click Options, which opens the Print Table Definition dialog box.

Preventing database problems
• Open the database file, and then follow the steps:

12. In the Print Table Definition dialog box, click Cancel.

13. Click the All Object Types tab, click Select All, and then click OK to start the documentation
process and create the report, which Access displays in Print Preview.

Preventing database problems
• Open the database file, and then follow the steps:

14. Zoom in on the report to examine the kinds of things included in the documentation. Then use
the page navigation bar to scroll through a few pages.

Key points
• You can assign a password to a database to prevent unauthorized

users from opening it. Assigning a password automatically
encrypts the database.

• Splitting a database can enhance database performance and
safeguard data in a multiuser environment.

• If you save the database as an .accde file, people can use its forms
and reports but not create new ones.

• Access automatically fixes many problems that can arise with a
database. You can prevent problems by frequently using the
utilities provided for that purpose.

• The simplest way to protect your database is to back it up
regularly.

Еxercises
• The Northwind database is a sample database, designed to assist in learning and

demonstrations, etc. It demonstrates what an inventory/orders system might look
like for a mail order dry goods company.

• The Northwind sample database is based on a fictitious company called Northwind
Traders, which imports and exports specialty foods from around the world.

Review and test everything from this practical lesson with this database.

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 5. Practice

❑ Topic 3. Creation of a query. Use of queries.

❑ Practical lesson 1. Creation of a query

Practical lesson. Creation of a query.

Joyce Cox, Joan Lambert.
Microsoft Access 2013 Step By
Step, Microsoft Press., 2013.

https://support.microsoft.com/en-us/access

https://www.customguide.com

Introduction to queries

• Using a query makes it easier to view, add, delete, or
change data in your Access database. Some other
reasons for using queries:

– Find specific quickly data by filtering on specific
criteria (conditions)

– Calculate or summarize data

– Automate data management tasks, such as
reviewing the most current data on a recurring
basis.

Introduction to queries
• In a well-designed database, the data that you want to present

through a form or report is usually located in multiple tables.

• A query can pull the information from various tables and assemble
it for display in the form or report.

• A query can either be a request for data results from your database
or for action on the data, or for both.

• A query can give you an answer to a simple question, perform
calculations, combine data from different tables, add, change, or
delete data from a database.

• Since queries are so versatile, there are many types of queries and
you would create a type of query based on the task.

Introduction to queries

Major query types Use

Select To retrieve data from a table or

make calculations.

Action Add, change, or delete data. Each

task has a specific type of action

query. Action queries are not

available in Access web apps.

Create a select query
• If you want to review data from only certain fields in a table, or review

data from multiple tables simultaneously or maybe just see the data based
on certain criteria, a select query type would be your choice.

• For example, if your database has a table with a lot of information about
products and you want to review a list of products and their prices, here’s
how you’d create a select query to return just the product names and the
respective price:

1. Open the database and on the Create tab, click Query Design.

2. On the Tables tab, double-click the Products table.

3. In the Products table, let’s say that you have Product Name and List Price
fields. Double-click the Product Name and List Price to add these fields to
the query design grid.

4. On the Design tab, click Run. The query runs, and displays a list of products
and their prices.

Create a select query
• You can also review data from multiple related tables simultaneously. For

example, if you have a database for a store that sells food items and you
want to review orders for customers who live in a particular city. Say that
the data about orders and data about customers are stored in two tables
named Customers and Orders respectively. If each table has a Customer ID
field, which forms the basis of a one-to-many relationship between the
two tables. You can create a query that returns orders for customers in a
particular city, for example, Las Vegas, by using the following procedure:

1. Open the database. On the Create tab, in the Query group, click Query
Design.

2. On the Tables tab, double-click Customers and Orders.

3. In the Customers table, double-click Company and City to add these fields to
the query design grid.

4. In the query design grid, in the City column, clear the check box in
the Show row.

Create a select query
5. Open the database. On the Create tab, in the Query group, click Query

Design.

Clearing the Show check box prevents the query from displaying the city in its results, and
typing Las Vegas in the Criteria row specifies that you want to see only records where the value of
the City field is Las Vegas. In this case, the query returns only the customers that are located in
Las Vegas. You don’t need to display a field to use it with a criterion.

6. In the Orders table, double-click Order ID and Order Date to add these fields
to the next two columns of the query design grid.

7. On the Design tab, in the Results group, click Run. The query runs, and then
displays a list of orders for customers in Las Vegas.

8. Press CTRL+S to save the query.

Now, we will show how to create a simple select query using the Query Wizard
in Access.

Use the Query Wizard to create a select query
• You can use the Query Wizard in Access to automatically create a

select query.

• When you use the wizard, you have less control over the details of
the query design, but the query is usually created faster than if you
did not use the wizard.

• Moreover, the wizard can catch some simple design mistakes and
prompt you to perform a different action.

• If you use fields from data sources that are not related to each
other, the Query Wizard asks you if you want to create
relationships. Therefore, before you run the wizard, consider
creating any relationships that your query needs.

Use the Query Wizard to create a select query
1. On the Create tab, in the Queries group, click Query Wizard.

2. In the New Query dialog box, click Simple Query Wizard, and then click OK.

3. Next, you add fields. You can add up to 255 fields from as many as 32 tables or
queries. For each field, perform these two steps:

1. Under Tables/Queries, click the table or query that contains the field.

2. Under Available Fields, double-click the field to add it to the Selected Fields list. If you

want to add all fields to your query, click the button with the double right arrows (>>).

3. When you have added all the fields that you want, click Next.

Use the Query Wizard to create a select query
4. If you did not add any number fields (fields that contain numeric data), skip ahead

to step 9. If you added any number fields, the wizard asks whether you want the
query to return details or summary data.

Do one of the following:

1. If you want to see individual records, click Detail, and then click Next. Skip
ahead to step 9.

2. If you want to see summarized numeric data, such as averages, click Summary,
and then click Summary Options.

Use the Query Wizard to create a select query
5. In the Summary Options dialog box, specify which fields you want to summarize,

and how you want to summarize the data. Only number fields are listed.

For each number field, choose one of the following functions:

Use the Query Wizard to create a select query
6. In If you want the query results to include a count of the records in a data source,

select the appropriate Count records in data source name check box.

7. Click OK to close the Summary Options dialog box.

8. If you did not add a date/time field to the query, skip ahead to step 9. If you added
a date-time field to the query, the Query Wizard asks you how you would like to
group the date values. For example, suppose you added a number field ("Price")
and a date/time field ("Transaction_Time") to your query, and then specified in
the Summary Options dialog box that you want to see the average value of the
number field "Price". Because you included a date/time field, you could calculate
summary values for each unique date/time value, for each day, for each month, for
each quarter, or for each year.

Use the Query Wizard to create a select query

Select the time period that you want to use to group the date/time values, and then click Next.

9. On the last page of the wizard, give the query a title, specify whether you want to
open or modify the query, and then click Finish.

If you choose to open the query, the query displays the selected data in Datasheet
view. If you choose to modify the query, the query opens in Design view.

Create an update query
• You can use an update query to change the data in your tables, and you

can use an update query to enter criteria to specify which rows should be
updated. An update query provides you an opportunity to review the
updated data before you perform the update.

• For example in the Chicago Orders table, the Product ID field shows the
numeric Product ID. To make the data more useful in reports, you can
replace the product IDs with product names, use the following procedure:

1. Open the Chicago Orders table in Design view.

2. In the Product ID row, change the Data Type from Number to Text.

3. Save and close the Chicago Orders table.

4. On the Create tab, in the Query group, click Query Design.

5. Double-click Chicago Orders and Products.

6. On the Design tab, in the Query Type group, click Update.

Create an update query
7. In the design grid, the Sort and Show rows disappear, and the Update To row

appears.

8. In the Chicago Orders table, double-click Product ID to add this field to the
design grid.

9. In the design grid, in the Update To row of the Product ID column, type or paste
the following: [Products].[Product Name]

10.In the Criteria row, type or paste the following: [Product ID] Like
([Products].[ID])

11.You can review which values will be changed by an update query by viewing the
query in Datasheet view.

12.On the Design tab, click View > Datasheet View. The query returns a list of
Product IDs that will be updated.

13.On the Design tab, click Run.

When you open the Chicago Orders table, you will see that the numeric values in the
Product ID field have been replaced by the product names from the Products table.

Create an update query

• An Update query is a type of action query that makes changes to several records
at the same time. For example, you could create an Update query to raise prices
on all the products in a table by 10%.

• Just like other action queries, you create an Update query by first creating a
Select query and then converting the Select query to an Update query.

• UPDATE is especially useful when you want to change many records or when the
records that you want to change are in multiple tables.

• You can change several fields at the same time. The following example increases
the Order Amount values by 10 percent and the Freight values by 3 percent for
shippers in the United Kingdom:

UPDATE Orders

SET OrderAmount = OrderAmount * 1.1,

Freight = Freight * 1.03

WHERE ShipCountry = 'UK';

If you want to know which records
were updated, first examine the
results of a select query that uses the
same criteria, and then run the
update query.

Create a delete query
• You can use a delete query to delete data from your tables, and you can

use a delete query to enter criteria to specify which rows should be
deleted. A delete query provides you an opportunity to review the rows
that will be deleted before you perform the deletion.

• For example, say that while you were preparing to send the Chicago
Orders table from the previous example, to your Chicago business
associate, you notice that some of the rows contain a number of empty
fields. You decided to remove these rows before you send the table. You
could just open the table and delete the rows manually, but if you have
many rows to delete and you have clear criteria for which rows should be
deleted, you might find it helpful to use a delete query.

• You can use a query to delete rows in the Chicago Orders table that do not
have a value for Order ID by using the following procedure:

Create a delete query

• You can use a query to delete rows in the Chicago Orders table that do not
have a value for Order ID by using the following procedure:

1. On the Create tab, click Query Design.

2. Double-click Chicago Orders.

3. On the Design tab, in the Query Type group, click Delete. In the design grid,
the Sort and Show rows disappear, and the Delete row appears.

4. In the Chicago Orders table, double-click Order ID to add it to the grid.

5. In the design grid, in the Criteria row of the Order ID column, type Is Null.

6. On the Design tab, in the Results group, click Run.

Create a delete query
• Example:
1. Click the Create tab on the ribbon.

2. Click the Query Design button.

Create a delete query
• Example:
The query design window and Show Table dialog box both appear. Now you need to select the tables and/or
queries you want to use in the delete query.

3. Select the tables and queries you want to add and click Add.

4. Click Close.

Create a delete query
• Example:
If the tables are related, Access automatically connects their common fields with a join line. If the tables aren't
related, you will have to manually join them by dragging a field from one table's field list to the matching field
in the other table's field list.

5. Connect any unrelated tables. Next, tell Access that this is a Delete query.

6. Click the Delete button on the ribbon. Access converts the select query to a Delete query and displays the
Delete row in the query design grid. Now you need to tell Access what you want to delete.

7. Double-click the asterisk (*) from the table field list for the table from which you want to delete
information.

Create a delete query
• Example:
Notice that From appears in the Delete cell for the asterisk field, indicating that the records will be deleted
from this table. Unless you want the delete query to delete every record in the table, you will need to add
some limiting criteria.

8. Drag the field you want to use as the limiting criteria onto the design grid. Next you need to tell Access the
specific data to delete.

9. Click the field's Criteria row and type the specific data you want to delete and press Tab.

Access will add the
quotation marks around the
text string for you. That's all
there is to creating a Delete
query.

One-table queries (By an Example)

• We intend to execute a query on the Customers table in our bakery database. The
purpose of this query is to identify and compile a list of nearby customers who are
most likely to attend a special event we are hosting at our bakery. The query will filter
the Customers table to show only those customers who live in the nearby area.
Consequently, we will obtain a list of relevant customers who fit our specific criteria.

• To locate customers who reside in Raleigh, we will conduct a search in the City field of
our database. However, we also wish to invite customers who live in the suburbs that
are in proximity to Raleigh. Therefore, we will include an additional criterion by adding
the zip code 27513 to our search.

• It's possible that this approach may resemble the use of a filter, and indeed, a one-
table query is essentially an advanced form of filtering applied to a single table.

Examples:

To create a simple one-table query:

1. Select the Create tab on the Ribbon, and locate the Queries group.

2. Click the Query Design command.

To create a simple one-table
query:

3.Upon selecting the option to run a
query, Access will switch to the Query
Design view. A dialog box titled "Show
Table" will appear, prompting the user
to choose the table on which they wish
to run the query. In this instance, we will
select the Customers table, as that is the
table we want to query.

4. Click Add, then click Close.

To create a simple one-table query:

5. Once the table is selected, it will be displayed as a
small window in the Object Relationship pane. To add
fields to the query, double-click on the desired field
names within the table window. As each field is
selected, it will be added to the design grid located at
the bottom of the screen. For our particular query, we
wish to send invitations to customers residing in a
specific area. Therefore, we will include fields such as
First Name, Last Name, Street Address, City, and Zip
Code in our query design.

To create a simple one-table query:

6. To establish the search criteria for the query, click
on the cell located in the "Criteria" row for each
field that needs to be filtered. If multiple criteria
are entered into different fields within the
"Criteria" row, the query will only display results
that meet all specified criteria. However, if multiple
criteria need to be set without requiring the
records to meet all of them, the first criterion can
be entered in the "Criteria" row, while the
additional criteria can be entered in the "Or:" row
and the rows below it. In this scenario, we want to
locate customers who reside in Raleigh or have the
27513 zip code. Thus, we will enter "Raleigh" in the
"Criteria" row for the City field and "27513" in the
"Or:" row for the Zip Code field. By using quotation
marks, the query will search for an exact match
within these fields.

To create a simple one-table query:

7. Once the search criteria have been set, the query can be executed by clicking on the
"Run" command, which is located on the Design tab.

8. The query output will be presented in the form of a table in the
Datasheet view. If desired, the query can be saved by selecting the "Save"
command located in the Quick Access Toolbar. After clicking on the "Save"
command, a dialog box will appear, prompting the user to input a name for
the query. Once the name has been entered, click on "OK" to save the
query.

To create a simple one-table query:

We have learned how to create a basic query that involves a single table.

Designing a Multi-table Query:

• It is highly likely that many of the queries you will create in Access will
involve multiple tables, providing you the ability to address more intricate
questions.

• If you are unclear about what you are looking for and how to achieve it,
designing queries in Access can be a challenging task. While a basic query
involving a single table may be straightforward enough to improvise,
creating more sophisticated queries will require careful planning and
consideration.

Designing a Multi-table Query:

Planning a Query

To prepare a query that involves multiple tables, you should follow these four steps:

1. Determine the specific question you want to answer using the query. While
building a query is more complex than simply asking a question, having a clear
idea of what you want to know is crucial to creating a useful query.

2. Identify all the types of information that you want to include in the query
results. Which fields in the tables contain this information?

3. Locate the fields that you want to include in the query. Which tables do these
fields belong to?

4. Determine the criteria that each field needs to meet. Consider the question
you asked in step one. Which fields do you need to search to find specific
information? What information are you looking for, and how will you search
for it?

Planning a Query

Step 1 : Pinpointing the question we want to
ask

Our bakery database has a variety of
customers, including some who have never
ordered from us but are in our database
because they subscribed to our mailing list.
While most of our customers reside within
our city, there are some who live outside of
our area, even in different states. Our goal is
to encourage our out-of-town customers who
have placed orders in the past to visit us again
by sending them some coupons. However, we
only want to send coupons to those
customers who live within our area and not
too far away. Therefore, we need to identify
customers who live outside our city but still
reside within our area.

Designing a Multi-table Query:

Planning a Query

Step 2 :Identifying the information we need

In creating a list of customers, we need to
consider the necessary information to include.
This should cover the customers' personal details
such as their names, contact information like
addresses, phone numbers, and email addresses.
Additionally, we want to identify customers who
have previously placed orders. This can be done
by including the order ID numbers in the list,
allowing us to narrow down the list to customers
who have previously placed orders.

Designing a Multi-table Query:

Planning a Query

Step 3 :Finding the tables that have the
data we require.

To create a query, it's important to have a
good understanding of the tables in your
database. In our case, we are familiar with
our own database and we know that the
relevant customer information is stored in
the Customers table. The Order ID
numbers we need are located in the Orders
table. By including these two tables in our
query, we can retrieve all the necessary
information.

Designing a Multi-table Query:

Planning a Query

Step 4 : Determining the criteria our query
for search

To answer our question, we need to set
criteria that filter out customers who live
within our city but include those who live in
our area outside the city limits. We can set
criteria for the "City" field to exclude our city
name, and we can set criteria for the "State"
field to include only our state abbreviation.
This will give us a list of customers who live in
our area but not within our city limits. For the
"Order ID" field, we can set criteria to
retrieve only those customers who have
placed orders in the past.

Designing a Multi-table Query:

Joining tables in queries
When creating a query in Access with multiple
tables, it's important to consider how to link or
join the tables. In the Object Relationship pane,
you will see how the two tables are related to
each other.

The line connecting the two tables in the Object
Relationship pane is referred to as the join line.
It is an arrow-shaped line that indicates the
sequence in which the query processes data
from the two tables. In the given image, the
arrow is pointing from left to right, which means
the query will first examine the data in the left
table and then look at only the relevant data in
the right table that corresponds to the records it
has already examined in the left table.

Designing a Multi-table Query:

Joining tables in queries

To ensure that your query retrieves the correct
information, you may need to change the direction of
the join between tables. The join direction can affect
the information your query retrieves. Sometimes,
Access will join tables from right to left instead of left to
right, depending on the relationship between the
tables.

In our query, we have included the Customers table and
the Orders table to see customers who have placed
orders. To understand this better, let's examine the data
in these tables.

Designing a Multi-table Query:

Joining tables in queries

• When examining the two tables, it becomes clear
that every order in the Orders table is associated
with a customer in the Customers table.

• However, some customers in the Customers table
have never placed an order and are not linked to any
orders, while others who have placed multiple orders
are connected to more than one order.

• Therefore, even when two tables are linked, it is
possible for one table to contain records that have
no relationship with any record in the other table.

• If Access tries to execute our query with the current
join direction, from left to right, it will retrieve all
records from the left table, which is our Customers
table.

Designing a Multi-table Query:

Joining tables in queries

After retrieving every record from the left
table, Access will then fetch every record
from the right table that is related to the
records retrieved from the left table.Our
current join, which starts with the Customers
table, includes all customers regardless of
whether they've placed orders or not. This
results in more information than we require.
We only want to retrieve records for
customers who have placed orders.

Designing a Multi-table Query:

Joining tables in queries

• We can solve this issue by simply changing the
direction of the join line. If we join the tables from right
to left instead, Access will start by retrieving the orders
from the Orders table:

• By changing the direction of the join line to right-to-
left, Access will first retrieve the orders from the Orders
table, and then look at the Customers table to retrieve
only the records of customers who are linked to an
order in the Orders table. This will ensure that our
query only includes records for customers who have
placed orders, which is what we need.

Designing a Multi-table Query:

• Once we have completed the planning process for our query, we can begin
designing and executing it. It is important to refer to any written plans we
have created during the query design process.

To create a multi-table query:

1. Select the Query Design command from the Create tab on the Ribbon

Creating a multi-table query

2. To include tables in your query,
you need to select them in the
dialog box that appears and click
the "Add" button. You can select
multiple tables by holding down
the Ctrl key on your keyboard. In
our case, we decided that we
needed data from the Customers
and Orders tables when we
planned our query, so we will add
these tables.

3. After you have added all of the
tables you want, click Close.

Creating a multi-table query

4. You will see the tables you added in the Object Relationship pane,
connected by a join line. If you want to edit the join direction between two
tables, you can double-click on the thin section of the join line.

Creating a multi-table query

5. To change the join direction, you can double-
click on the join line to open the Join Properties
dialog box. In this dialog box, you can select the
option that specifies the direction of your join.
For instance, if you want a right-to-left join, you
can choose option 3.

6. To add fields to your query, double-click the
desired field names in the table windows.
These fields will be added to the design grid
located in the bottom part of the screen. For
example, in our scenario, we will add several
fields from the Customers table such as First
Name, Last Name, Street Address, City, State,
Zip Code, and Phone Number. We will also add
the ID number from the Orders table.

Creating a multi-table query

7. To set field criteria, type the desired criteria
in the criteria row of each field. For our
example query, we want to set two criteria:
"Not in ('Raleigh')" in the City field and "Like
('919*')" in the Phone Number field. This will
help us find customers who don't live in Raleigh
but live in the 919 area code.

8. After you have set your criteria, run the
query by clicking the Run command on the
Design tab.

Creating a multi-table query

9. The query results will be presented in the
Datasheet view, which resembles a table. You can
save your query by clicking the Save command in the
Quick Access Toolbar and entering the desired name
when prompted, then clicking OK.

Creating a multi-table query is completed

Creating a multi-table query

SQL View in Access
• SQL view in Access lets you see the SQL code of Access queries. When you

are visually creating the query in the query design view in Access, what
you are really doing is visually constructing SQL code. SQL stands for
Structured Query Language.

• If you want to learn SQL, a good way to start is by viewing the SQL code
your Access queries produce. To view the SQL code for an Access query,
open the query in query design view. Then click the “View” drop-down
button in the “Results” button group on the “Design” tab of the “Query
Tools” contextual tab in the Ribbon. From the drop-down menu of choices
that appears, select the “SQL View” command. Access then shows your
query as SQL code, so you can see how it works.

• If you are familiar with how SQL is constructed in Access, you can also
create and edit the SQL code directly in the SQL view, if desired. If you do
makes changes to the query’s SQL in this view you want to save, make sure
to click the “Save” button in the Quick Access toolbar.

SQL View in Access
• SQL view in Access:

SQL statements
• The following table shows sample SQL statements that employ an

expression:

SQL statement that uses an expression Result

SELECT [FirstName],[LastName] FROM

[Employees] WHERE

[LastName]="Danseglio";

Displays the values in the FirstName and

LastName fields for employees whose last name

is Danseglio.

SELECT [ProductID],[ProductName]

FROM [Products] WHERE

[CategoryID]=Forms![New

Products]![CategoryID];

Displays the values in the ProductID and

ProductName fields in the Products table for

records in which the CategoryID value matches

the CategoryID value specified in an open New

Products form.
SELECT Avg([ExtendedPrice]) AS

[Average Extended Price] FROM

[Order Details Extended] WHERE

[ExtendedPrice]>1000;

Calculates the average extended price for orders

for which the value in the ExtendedPrice field is

more than 1000, and displays it in a field named

Average Extended Price.

SELECT [CategoryID],

Count([ProductID]) AS

[CountOfProductID] FROM [Products]

GROUP BY [CategoryID] HAVING

Count([ProductID])>10;

In a field named CountOfProductID, displays the

total number of products for categories with

more than 10 pro

SQL statements
• Creates an update query that changes values in fields in a specified table

based on specified criteria:

UPDATE table

SET newvalue

WHERE criteria;

• The UPDATE statement has these parts:

Part Description

table The name of the table containing the

data you want to modify.

newvalue An expression that determines the

value to be inserted into a particular

field in the updated records.

criteria An expression that determines which

records will be updated. Only records

that satisfy the expression are

updated.

SQL statements
• Creates a delete query that removes records from one or more of the

tables listed in the FROM clause that satisfy the WHERE clause:

DELETE [table.*]

FROM table

WHERE criteria

• The DELETE statement has these parts:

Part Description

table The optional name of the table from

which records are deleted.

table The name of the table from which

records are deleted.

criteria An expression that determines which

records to delete.

Query Design View

The Query Results

Еxercises
• The Northwind database is a sample database, designed to assist in learning and

demonstrations, etc. It demonstrates what an inventory/orders system might look
like for a mail order dry goods company.

• The Northwind sample database is based on a fictitious company called Northwind
Traders, which imports and exports specialty foods from around the world.

Using this database, please try to create different queries.

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 5. Practice

❑ Topic 3. Creation of a query. Use of queries.

❑ Practical lesson 2. Use of queries

Practical lesson. Use of queries.

Joyce Cox, Joan Lambert.
Microsoft Access 2013 Step By
Step, Microsoft Press., 2013.

https://support.microsoft.com/en-us/access

https://www.customguide.com

How are queries used?
▪ The strength of queries exceeds that of

basic searches or filters used to locate
data within a table. This is due to queries
being able to gather information from
various tables simultaneously. Unlike
searches that can only look in one table,
queries can draw data from several
sources, allowing for more
comprehensive and complex analysis.

▪ Although query results are typically
displayed in a table format, the process
of designing a query involves a different
perspective. Rather than focusing on the
presentation of data, query design
involves constructing a blueprint of how
the data will be retrieved and combined
from multiple tables. The resulting query
is then used to generate a table
displaying the desired information.

Run a query
• A query is a set of instructions that you can use for

working with data. You run a query to perform these
instructions. In addition to returning results — which
can be sorted, grouped, or filtered — a query can
also create, copy, delete, or change data.

• This lesson explains how to run queries and provides
only brief overviews of the various types of queries.
The lesson also discusses error messages you might
encounter when you run different types of queries,
and provides steps you can take to work around or
correct those errors.

Run a query
• Important: You cannot run action queries if a

database is operating in Disabled mode —a reduced
functionality mode that Access uses to help protect
your data in certain circumstances. You may see a
dialog box warning, or you may see a warning in the
Message Bar

• Run a select or a crosstab query:

– You use select queries and crosstab queries to retrieve and
present data, and to supply forms and reports with data.
When you run a select or a crosstab query, Access displays
the results in Datasheet view.

Run a query
• Run the query

1. Locate the query in the Navigation Pane.

2. Do one of the following:

1. Double-click the query you want to run.

2. Click the query you want to run, and then press ENTER.

If the query you want to run is currently open in Design view, you

can also run it by clicking Run in the Results group on

the Design tab on the Ribbon, part of the Microsoft Office Fluent
user interface.

Run a query
• Run an action query

▪ There are four types of action queries: append queries, delete
queries, update queries, and make-table queries.

▪ Except for make-table queries (which create new tables), action
queries make changes to the data in tables they are based on.

▪ These changes cannot be easily undone, for example, by
pressing CTRL+Z. If you make changes using an action query that
you later decide you didn't want to make, usually you will have
to restore the data from a backup copy.

▪ For this reason, you should always make sure you have a fresh
backup of the underlying data before running an action query.

Run a query
• Run an action query

▪ You can mitigate the risk of running an action query by first
previewing the data that will be acted upon. There are two ways
to do this:

▪ View the action query in Datasheet view before you run it. To do this, open

the query in Design view, click View on the Access status bar, and then

click Datasheet View on the shortcut menu. To switch back to Design view,

click View again, and then click Design View on the shortcut menu.

▪ Change the query to a select query, and then run it.

Note: Make sure to note what type of action query (append, update, make-table,

or delete) you are starting with, so you can change the query back to that type

after you preview the data with this method.

Run a query
• Run an action query

▪ Run an action query as a select query:

a. Open the action query in Design view.

b. On the Design tab, in the Query Type group, click Select.

c. On the Design tab, in the Results group, click Run.

▪ Run the query

When you are ready to run an action query, double-click it in the Navigation

Pane, or click it and then press ENTER.

Important: By default, Access disables all action queries in a database unless

you indicate that you trust the database. You can indicate that you trust a

database by using the Message Bar, just below the Ribbon.

Run a query
• Run an action query

▪ Trust a database

1. On the Message Bar, click Options.

The Microsoft Office Security Options dialog box appears.

2. Select Enable this content and then click OK.

• Run a parameter query

▪ A parameter query prompts you for a value when you run it.
When you supply the value, the parameter query applies it as a
field criterion. Which field it applies the criterion to is specified
in the query design. If you do not supply a value when
prompted, the parameter query interprets your input as an
empty string.

Run a query
• Run a parameter query

▪ A parameter query prompts you for a value when you run it.
When you supply the value, the parameter query applies it as a
field criterion. Which field it applies the criterion to is specified
in the query design. If you do not supply a value when
prompted, the parameter query interprets your input as an
empty string.

▪ A parameter query is always also another type of query. Most
parameter queries are select queries or crosstab queries, but
append, make-table, and update queries can also be parameter
queries.

▪ You run a parameter query according to its other query type,
but, in general, use the following procedure.

Run a query
• Run a parameter query

▪ Run the query

1.Locate the query in the Navigation Pane.

2.Do one of the following:

1. Double-click the query you want to run.

2. Click the query you want to run, then press ENTER.

3.When the parameter prompt appears, enter a value

to apply as a criterion.

Run a query
• Run a SQL-specific query

▪ There are three main types of SQL-specific query: union queries,
pass-through queries, and data-definition queries.

▪ Union queries combine data from two or more tables, but not in
the same manner as other queries. Whereas most queries
combine data by concatenating rows, union queries combine
data by appending rows.

▪ Union queries differ from append queries in that union queries
do not change the underlying tables. Union queries append the
rows in a recordset that does not persist after the query is
closed.

Run a query
• Run a SQL-specific query

▪ Pass-through queries are not processed by the database engine
that comes with Access; rather, they are passed directly to a
remote database server that does the processing and then
passes the results back to Access.

▪ Data-definition queries are a special type of query that does not
process data; instead, data-definition queries create, delete or
modify other database objects.

▪ SQL-specific queries cannot be opened in Design view. They can
only be opened in SQL view, or run. Except for data-definition
queries, running a SQL-specific query opens it in Datasheet view.

Run a query
• Run a SQL-specific query

▪ Run the query

1.Locate the query in the Navigation Pane.

2.Do one of the following:

1. Double-click the query you want to run.

2. Click the query you want to run, and then press ENTER.

• Troubleshoot an error message

The following table shows some common error messages you may
encounter. These errors can appear either as a message in a cell
(instead of an expected value), or as an error message. The sections
that follow the list include procedures you can use to resolve these
errors.

Run a query
• Run a SQL-specific query

Error message Problem Solution

Type mismatch in expression The query may be joining fields that have

different data types.

Check the query design and ensure that the

joined fields have the same data type. For

instructions, see the section.

Record is Deleted This can occur if either the object or the

database is damaged.

Compact and repair the database. For

instructions, see the section.

Circular reference caused by alias The alias assigned to a field is the same as a

component of the expression for that field.

An alias is a name that is given to any

expression in the Field row of the query

design grid that is not an actual field. Access

assigns the alias for you if you do not do so

yourself; for example, EXPR1. An alias is

immediately followed by a colon (:) and then

by the expression. When you run the query,

the alias becomes the column name in the

datasheet.

Change the alias. For instructions, see the

section.

#Error This error can occur when the value of a

calculated field is greater than the value

allowed by the field's FieldSize property

setting. This also occurs when the

denominator of a calculated field is or

evaluates to zero (0).

Ensure that the calculated field's

denominator does not evaluate to zero (0). If

appropriate, change the FieldSize property.

#Deleted The record being referred to has been

deleted.

If the record was deleted accidentally, it must

be restored from a backup. If the deletion

was intentional, you can dismiss this error

message by pressing SHIFT+F9 to refresh the

query.

Run a query
• Check the joined fields in your query

▪ To check the data types of fields in a query, you look at the source tables in
Design view and inspect the properties for the fields you are checking.

1. Open the query in Design view. Joins appear as lines that connect fields in

the source tables. Note the table and field names for each join.

2. In the Navigation Pane, right-click each table that has one or more fields

joined in your query, and then click Design View.

1. Joined fields with

different data types.

2. Right-click the table, then

click Design View.

Run a query
• Check the joined fields in your query

▪ To check the data types of fields in a query, you look at the source tables in
Design view and inspect the properties for the fields you are checking.

3. For each join, compare the values in the Data Type column of the table

design grid for the fields involved in that join.

4. To switch to a table so that you can see its fields, click the tab with that

table's name..

1. Check the data type of the joined fields

in table Design view.

Run a query
• Compact and repair your database

▪ Running the Compact and Repair Database utility within Access can improve
the performance of your database.

▪ This utility makes a copy of the database file and, if it is fragmented,
rearranges how the database file is stored on disk.

▪ After the compact and repair process has completed, the compacted database
will have reclaimed wasted space, and is usually smaller than the original.

▪ By compacting the database frequently, you can help ensure optimal
performance of the database application, and also resolve errors that arise
from hardware problems, power failures or surges, and similar causes.

▪ After the compact operation has completed, query speed is enhanced because
the underlying data has been rewritten to the tables in contiguous pages.

▪ Scanning contiguous pages is much faster than scanning fragmented pages.
Queries are also optimized after each database compaction.

Run a query
• Compact and repair your database

▪ During the compact operation, you can use the original name for the
compacted database file, or you can use a different name to create a separate
file.

▪ If you use the same name and the database is compacted successfully, Access
automatically replaces the original file with the compacted version.

Set an option that automates this process

1. Click File > Options to open the Access Options dialog box.

2. Click Current Database and, under Application Options, select the Compact on

Close check box.

This causes Access to automatically compact and repair the database every

time it is closed.

Manually compact and repair your database

1. Click Database Tools > Compact and Repair Database.

Run a query

• Change a field alias

1. Open the query in Design view.

2. In the query design grid, look for fields that have aliases. These

will have a colon at the end of the field name, as in Name:.

3. Check each alias to ensure that the alias does not match the

name of any field that is part of the alias' expression. If it does,

change the alias.

Use a query as the record source for a form
or report

• You can use a query to supply data to a form or report in Access.

• You can use a query when you create the form or report, or you can
change an existing form or report by setting its Record Source
property.

• When you set the Record Source property, you can either specify an
existing query, or you can create a new query to use.

• If you use a query as the record source, you might not be able to
edit the data. Before you use a query as your record source, you
should consider whether you need to edit data.

Use a query as the record source for a form
or report

• Use an existing query as the record source of a form or report

– In Design view, set the Record Source property to an existing query that you
want to use.

1. Open the form or report in Design view.

If the property sheet is not already open, press F4 to open it.

2. In the property sheet, on the Data tab, click the Record Source property

box.

3. Do one of the following:

- Start typing the name of the query that you

want to use.

Access automatically fills in the name of the

object as you type.

or

- Click the arrow and then select the query that

you want to use.

Use a query as the record source for a form
or report

• Create a query as the record source of a form or report

– In Design view, use the Build button (Builder button) in the Record Source
property box to create a new query to use as the record source.

1. Open the form or report in Design view.

If the property sheet is not already open, press F4 to open it.

2. In the property sheet, on the Data tab, click the Record Source property

box.

3. Click Builder button.

4. Design the query, and then

save and close it.

Examples of query criteria
• Query criteria help you zero in on specific items in an Access

database. If an item matches all the criteria you enter, it appears in
the query results.

• To add criteria to an Access query, open the query in Design view
and identify the fields (columns) you want to specify criteria for.

• If the field is not in the design grid, double-click the field to add it to
the design grid and then enter the criterion in the Criteria row for
that field.

• A query criterion is an expression that Access compares to query
field values to determine whether to include the record that
contains each value. For example, = "Chicago" is an expression that
Access can compare to values in a text field in a query. If the value
for that field in a given record is "Chicago", Access includes the
record in the query results.

Examples of query criteria
• A criterion is similar to a formula — it is a string that may consist of

field references, operators, and constants. Query criteria are also
referred to as expressions in Access.

• The following tables shows some sample criteria and explains how
they work.

Criteria Description

>25 and <50 This criterion applies to a Number field, such as

Price or UnitsInStock. It includes only those records

where the Price or UnitsInStock field contains a

value greater than 25 and less than 50.

DateDiff ("yyyy", [BirthDate], Date()) > 30 This criterion applies to a Date/Time field, such as

BirthDate. Only records where the number of

years between a person's birthdate and today's

date is greater than 30 are included in the query

result.

Is Null This criterion can be applied to any type of field to

show records where the field value is null.

Examples of query criteria
• As you can see, criteria can look very different from each other,

depending on the data type of the field to which they apply and
your specific requirements.

• Some criteria are simple, and use basic operators and constants.

• Others are complex, and use functions, special operators, and
include field references.

• To add a criteria to a query, you must open the query in Design
view. You then identify the fields for which you want to specify
criteria. If the field is not already in the design grid, you add it by
either dragging it from the query design window to the field grid, or
by double-clicking the field (Double-clicking the field automatically
adds it to the next empty column in the field grid.). Finally, you type
the criteria in the Criteria row:

Examples of query criteria
• Criteria that you specify for different fields in the Criteria row are

combined by using the AND operator. In other words, the criteria
specified in the City and BirthDate fields are interpreted like this:

City = "Chicago" AND BirthDate < DateAdd (" yyyy ", -40, Date())

1. The City and BirthDate fields include

criteria.

2. Only records where the value of the City

field is Chicago will satisfy this criterion.

3. Only records of those who are at least 40

years old will satisfy this criterion.

4. Only records that meet both criteria will

be included in the result.

Examples of query criteria
• What if you want only one of these conditions to be met? In other

words, if you have alternate criteria, how do you enter them?

• If you have alternate criteria, or two sets of independent criteria
where it is sufficient to satisfy one set, you use both
the Criteria and the or rows in the design grid.

1. The City criterion is specified in the

Criteria row.

2. The BirthDate criterion is specified in the

or row

Criteria specified in the Criteria and or rows are

combined using the OR operator, as shown below:

City = "Chicago" OR BirthDate < DateAdd (" yyyy ",

-40, Date())

If you need to specify more alternatives, use the rows

below the or row.

Examples of query criteria
• If the criteria is temporary or changes often, you can filter the

query result instead of frequently modifying the query criteria. A
filter is a temporary criterion that changes the query result without
altering the design of the query.

• If the criteria fields don't change, but the values you are interested
in do change frequently, you can create a parameter query. A
parameter query prompts the user for field values, and then uses
those values to create the query criteria.

• The following examples are for the

CountryRegion field in a query that is based

on a table that stores contacts information.

The criterion is specified in the Criteria row

of the field in the design grid.
•

Еxercises
• The Northwind database is a sample database, designed to assist in learning and

demonstrations, etc. It demonstrates what an inventory/orders system might look
like for a mail order dry goods company.

• The Northwind sample database is based on a fictitious company called Northwind
Traders, which imports and exports specialty foods from around the world.

Using this database, please try to use different queries.

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 5. Practice

❑ Topic 4. Merging of data into one form.
Presentation of an effective report.

❑ Practical lesson 1. Merging of data into one form

Practical lesson. Merging of data into one

form.

Joyce Cox, Joan Lambert.
Microsoft Access 2013 Step By
Step, Microsoft Press., 2013.

https://support.microsoft.com/en-us/access

https://www.customguide.com

Introduction to forms
• A form in Access is a database object that you can

use to create a user interface for a database
application.

• A "bound" form is one that is directly connected to a
data source such as a table or query, and can be used
to enter, edit, or display data from that data source.

• Alternatively, you can create an "unbound" form that
does not link directly to a data source, but which still
contains command buttons, labels, or other controls
that you need to operate your application.

Introduction to forms
• You can use bound forms to control access to data,

such as which fields or rows of data are displayed.

• For example, certain users might need to see only
several fields in a table with many fields.

• Providing those users with a form that contains only
those fields makes it easier for them to use the
database.

• You can also add command buttons and other
features to a form to automate frequently performed
actions.

Introduction to forms
• Think of bound forms as windows through which

people see and reach your database.

• An effective form speeds the use of your database,
because people don't have to search for what they
need.

• A visually attractive form makes working with the
database more pleasant and more efficient, and it
can also help prevent incorrect data from being
entered.

Create a form by using the Form tool
• You can use the Form tool to create a form with a

single mouse-click.

• When you use this tool, all the fields from the
underlying data source are placed on the form.

• You can start using the new form immediately, or you
can modify it in Layout view or Design view to better
suit your needs.

• Use the Form tool to create a new form:

Create a form by using the Form tool
• Use the Form tool to create a new form:

1. In the Navigation Pane, click the table or query that

contains the data you want to see on your form.

2. On the Create tab, in the Forms group, click Form.

• Access creates the form and displays it in Layout
view. In Layout view, you can make design changes to
the form while it is displaying data.

• For example, you can adjust the size of the text boxes
to fit the data, if necessary.

Create a form by using the Form tool
• If Access finds a single table that has a one-to-many

relationship with the table or query that you used to
create the form, Access adds a datasheet to the form
that is based on the related table or query.

• For example, if you create a simple form that is based
on the Employees table, and there is a one-to-many
relationship that is defined between the Employees
table and Orders table, the datasheet displays all the
records in the Orders table that relate to the current
Employee record.

Create a form by using the Form tool

• You can delete the datasheet from the form if you
decide you do not need it.

• If there is more than one table with a one-to-many
relationship to the table that you used to create the
form, Access does not add any datasheets to the
form.

Create a form by using the Form tool

• You can use the Form tool in Access to quickly create
a single item form. This type of form displays
information about one record at a time, as shown in
the following illustration:
1. The form displays information for a

single record.

2. In some cases, Access adds a

subdatasheet to display related

information.

When you use the Form tool, all the fields

from the underlying data source are added

to the form. You can start to use the new

form immediately, or you can modify it in

Layout view or Design view to better suit

your needs.

Create a split form by using the Split Form tool

• A split form gives you two views of the data at the
same time — a Form view and a Datasheet view.

• A split form differs from a form/subform
combination in that the two views are connected to
the same data source and are synchronized with one
another at all times.

• Selecting a field in one part of the form selects the
same field in the other part of the form.

Create a split form by using the Split Form tool

• You can add, edit, or delete data from either part (as
long as the record source is updatable, and you have
not configured the form to prevent these actions).

• Working with split forms gives you the benefits of
both kinds of forms in a single form.

• For example, you can use the datasheet portion of
the form to quickly locate a record, and then use the
form portion to view or edit the record.

Create a split form by using the Split Form tool
• To create a split form by using the Split Form tool:

1. In the Navigation Pane, click the table or query that contains the data

that you want on your form. Or open the table or query in Datasheet

view.

2. On the Create tab, in the Forms group, click More Forms, and then

click Split Form.

• Access creates the form and displays it in
Layout view. In Layout view, you can make
design changes to the form while it is
displaying data. For example, you can adjust
the size of the text boxes to fit the data, if
necessary.

Create a form that displays multiple records by
using the Multiple Items tool

• When you create a form by using the Form tool, the
form that Access creates displays a single record at a
time. If you want a form that displays multiple
records but is more customizable than a datasheet,
you can use the Multiple Items tool.

1. In the Navigation Pane, click the table or query that

contains the data you want to see on your form.

2. On the Create tab, in the Forms group, click More

Forms, and then click Multiple Items.

Create a form that displays multiple records by
using the Multiple Items tool

• Access creates the form and displays it in Layout
view. In Layout view, you can make design changes to
the form while it is displaying data.

• When you use the Multiple Items tool, the form that
Access creates resembles a datasheet. The data is
arranged in rows and columns, and you see more
than one record at a time.

• However, a Multiple Items form gives you more
customization options than a datasheet, such as the
ability to add graphical elements, buttons, and other
controls.

Create a form that displays multiple records by
using the Multiple Items tool

• A multiple item form, also known as a continuous
form, lets you show information from more than one
record at a time.

• The data is arranged in rows and columns (similar to
a datasheet), and multiple records are displayed at a
time.

• However, because it is a form, there are more
customization options than with a datasheet. You can
add features such as graphical elements, buttons,
and other controls.

Create a form that displays multiple records by
using the Multiple Items tool

• A multiple item form can resemble a datasheet when
you first create it, as shown in the following
illustration:

Create a form by using the Form Wizard

• To be more selective about what fields appear on
your form, you can use the Form Wizard instead of
the various form-building tools previously
mentioned.

• You can also define how the data is grouped and
sorted, and you can use fields from more than one
table or query, as long as you specified the
relationships between the tables and queries
beforehand.

Create a form by using the Form Wizard

1. On the Create tab, in the Forms group, click Form

Wizard.

2. Follow the directions on the pages of the Form Wizard.

Note: If you want to include fields from multiple tables and

queries on your form, do not click Next or Finish after you

select the fields from the first table or query on the first page

of the Form Wizard. Instead, repeat the steps to select a table

or query, and click any additional fields that you want to

include on the form. Then click Next or Finish to continue.

3. On the last page of the wizard, click Finish.

Create a form by using the Blank Form tool

• If the wizard or the form-building tools don't meet
your needs, you can use the Blank Form tool to build
a form. This can be a very quick way to build a form,
especially if you plan to put only a few fields on your
form.

1. On the Create tab, in the Forms group, click Blank Form.

Access opens a blank form in Layout view, and displays the Field

List pane.

2. In the Field List pane, click the plus sign (+) next to the table or

tables that contain the fields that you want to see on the form.

Create a form by using the Blank Form tool

The order of the tables in
the Field List pane can
change, depending on

which part of the form is
currently selected. If you
are not able to add a field
to the form, try selecting a
different part of the form
and then try adding the

field again.

Create a form by using the Blank Form tool

3. To add a field to the form, double-click it or drag it onto the

form.

• After the first field has been added, you can add several fields at

once by holding down the CTRL key, clicking several fields, and then

dragging them onto the form at the same time.

• The order of the tables in the Field List pane can change, depending

on which part of the form is currently selected. If the field you want

to add is not visible, try selecting a different part of the form and

then try adding the field again.

4. Use the tools in the Header/Footer group on the Design tab

to add a logo, title, or the date and time to the form.

5. Use the tools in the Controls group of the Design tab to add a

wider variety of controls to the form.
For a slightly larger selection of controls, switch to Design view by right-clicking the form and

then clicking Design View.

Understand Layout view and Design view

• Layout view Layout view is the most intuitive view to use for form

modification, and it can be used for almost all the changes that you

would want to make to a form in Access.

• In Layout view, the form is actually running. Therefore, you can see

your data much as it will appear when you are using the form.

However, you can also change the form design in this view. Because

you can see the data while you are modifying the form, this is a very

useful view for setting the size of controls or performing almost any

other task that affects the appearance and usability of the form.

• If you encounter a task that cannot be performed in Layout view,

you can switch to Design view. In certain situations, Access displays

a message that states that you must switch to Design view before
you can make a particular change.

Understand Layout view and Design view

• Design view Design view gives you a more detailed view of the

structure of your form. You can see the Header, Detail, and Footer

sections for the form. The form is not actually running when it is

shown in Design view. Therefore, you cannot see the underlying data

while you are making design changes. However, there are certain

tasks that you can perform more easily in Design view than in Layout

view. You can:

• Add a wider variety of controls to your form, such as bound object

frames, page breaks, and charts.

• Edit text box control sources in the text boxes themselves, without using

the property sheet.

• Resize form sections, such as the Form Header or the Detail section.

• Change certain form properties that cannot be changed in Layout view.

Fine-tune your form in Layout view

• After you create a form, you can easily fine-tune its

design by working in Layout view. Using the actual form

data as your guide, you can rearrange the controls and

adjust their sizes. You can place new controls on the

form and set the properties for the form and its controls.

• To switch to Layout view, right-click the form name in the

Navigation Pane and then click Layout View.

• Access shows the form in Layout view.

• You can use the property sheet to change the properties

for the form and its controls and sections. To display the

property sheet, press F4.

Fine-tune your form in Layout view

• You can use the Field List pane to add fields from the

underlying table or query to your form design. To display

the Field List pane:

• On the Design tab, in the Tools group, click Add Existing

Fields or use the keyboard shortcut by pressing ALT+F8.

• You can then drag fields directly from the Field List pane

onto your form.

• To add a single field, double-click it or drag it from the Field

List pane to the section on the form where you want it displayed.

• To add several fields at once, hold down CTRL and click the fields

that you want to add. Then drag the selected fields onto the

form.

Fine-tune your form in Design view

• You can also fine-tune your form's design by working in

Design view. You can add new controls and fields to the

form by adding them to the design grid. The property

sheet gives you access to many properties that you can

set to customize your form.

• To switch to Design view, right-click the form name in the

Navigation Pane and then click Design View.

• Access shows the form in Design view.

• You can use the property sheet to change the properties

for the form and its controls and sections. To display the

property sheet, press F4.

Fine-tune your form in Design view

• You can use the Field List pane to add fields from the

underlying table or query to your form design. To display

the Field List pane:

• On the Design tab, in the Tools group, click Add Existing

Fields or use the keyboard shortcut by pressing ALT+F8.

• You can then drag fields directly from the Field List pane

onto your form.

• To add a single field, double-click it or drag it from the Field

List pane to the section on the form where you want it displayed.

• To add several fields at once, hold down CTRL and click the fields

that you want to add. Then drag the selected fields onto the

form.

Create a tabbed form
• Adding tabs to an Access form can make it more

organized and easier to use, especially if the form

contains many controls. By placing related controls on

separate pages of the tab control, you can reduce clutter

and make it easier to work with your data.

• To add tabs to a form, you use the Tab Control tool. Each page of a

tab control acts as a container for other controls, such as text boxes,

combo boxes, or command buttons.

Create a tabbed form
• Add a tab control to a form

1.On the Design tab, in the Controls group,

click the Tab Control tool.

2.Click on the form where you want to place the

tab control.

Access places the tab control on the form.

Create a tabbed form
• Move existing controls to a tab page

1. Select the controls that you want to move to the

tab page. To select multiple controls, hold down the

SHIFT key and then click the controls you want to

move.

2. On the Home tab, in the Clipboard group,

click Cut.

3. Click the label text on the tab that corresponds to

the page on which you want to place the controls. A

selection box will appear on the tab page.

4. On the Home tab, in the Clipboard group,

click Paste.

Create a tabbed form
• Drag fields from the Field List task pane to a tab page

1. Select the tab page to which you want to add the fields.

2. On the Design tab, in the Tools group, click Add

Existing Field.

3. Navigate to the table that contains the fields you want

to add.

4. Drag each field from the Field List task pane to the tab

page. Alternatively, select several fields by holding down

the CTRL or SHIFT key while clicking the fields, and then

drag them all to the tab page at the same time.

5. Release the mouse button.

3 Ways To Merge Tables In Access Database

▪ Occasionally, copying and pasting content may not be the
most efficient method for transferring data, especially when
dealing with large amounts of data spread across multiple
tables in an Access database.

▪ To simplify this process, Access provides the option to merge
database tables, allowing you to maintain an organized
database structure effortlessly.

▪ There are three approaches offered by Access database to
merge tables or consolidate rows/columns in primary tables.
This lesson will provide you with detailed, step-by-step
instructions on how to perform each of these methods for
merging Access database tables.

Merge Tables In Access Database:

Why The Need Of Merging Data In Access?
▪ Merging data in Access enables you to conveniently

consolidate and analyze vast amounts of information.
Let's say you receive inputs from various sources, such
as all members of your account executive team.
Creating a report from a single file is straightforward
and can be accomplished by employing the simple
technique of copy and paste.

▪ However, when dealing with multiple records and
tables, copying and pasting data from numerous rows
and columns becomes inadequate.

▪ Hence, merging Access tables is the ideal solution for
such tasks.

How To Merge Tables In Access
Database?

Method 1 : Merge Access Tables Using Append
Method

As we are familiar, the Access database primarily
comprises tables. If your database contains two tables
that share similarities, there is a convenient way to
merge them without going through a laborious
manual process. The solution lies in utilizing the
append query.

By employing this specific append query command,
you can effortlessly merge table data in Access.

Furthermore, you have the flexibility to choose the
desired records from the source table and append
them to the destination table.

Step 1

• To begin the process of merging tables in Access,
open the Access database that contains the table
you want to merge with another table.

• It is important to ensure that the data types of the
source and destination tables are compatible with
each other.

• For example, if the first field of your source table is
of the number data type, the corresponding field in
the destination table must also be of the number
data type.

• According to Microsoft, text fields are generally
compatible with other field types. So, if your source
table has a number field and the destination table
has a text field, there shouldn't be any issues
during the merging process.

Step 2

• Click on the "Create" button and then select "Query
Design." This action will open the "Show Table"
window, where you will find a list of all the tables in
the database.

• Choose the table that contains the records you want
to copy.

• Click on "Add" and then select "Close." Access
database will add the fields and table to the query
designer.

Step 3

• In the query design, you will notice an asterisk
located at the top section. Double-click on it, and
Access will automatically include all the fields from
the tables in a grid within the query design.

Step 4
• Click on the "Run" button to execute the query and

view the table that contains the desired records.
• Navigate to View > Design View > Append option.

This action will open the Append window.
Step 5
• If your destination table is within the current

database, select "Current Database".
• Then, click on the combo box for "Table Name" and

choose the table where you want to merge the
records from the source table.

• Alternatively, if the destination table is located in
another Access database, select the "Another
Database" option. Provide the name and location
of the Access database that contains the
destination table.

• Enter the name of the table in the "Table Name"
field and click the OK button.

Step 6

• Right-click on the query design window and
select "Datasheet View" to preview the
records that will be appended by the query.

• For the top section of the window, right-click
and choose the "Design View" option.

Step 7

• Click on the View tab and then select the
Data Sheet > Run option.

• In the dialog box that appears, you will be
prompted to choose whether to append
rows from the source table to the
destination table in the Access database.

• Click on the "Yes" button to proceed with the
merging of tables in Access.

Method 2 : Merge Access Tables Using Inner Join

▪ Another approach to merge tables in Access is
by utilizing the inner join method.

▪ Here are the step-by-step instructions to
perform the merging process of Access
database tables using an inner join.

▪ Typically, an inner join is employed to retrieve
complete records from linked tables. It allows
you to identify common values present in both
Access database tables.

Steps To Merge Tables In Access By Using The
Inner Join Function

Step 1: Create the Tables

To begin, you must create a table that you wish to link
in your Access database.

As an example, I have created two tables: one for
shipping information and another for client details.

Here is a screenshot displaying the client and
shipping tables.

Finally, you will need to establish a link between the
shipping table and the client table using the Client ID
field, which should be present in both tables.

Step 2: Link the Tables

▪ To link tables in Access database, begin
by navigating to the Create tab and
selecting Query Design.

▪ In the "Show Table" dialog box, double-
click on each client and shipping table to
include them.

▪ Once done, click on the Close option.
Now, you will see the respective fields
from both tables appearing on the
screen.

Step 2: Link the Tables

▪ From the client table, drag the 'Client ID'
field and place it over the shipping table.

▪ This will establish a link between the
shipping and client tables using the
common field 'Client ID'.

Step 3: Select The Fields To Display

• Select the fields you want to display from the linked tables. To do this,
double-click on the desired fields in each table.

• For example, double-click on the following fields:

• From the Clients table, choose 'Client First Name' and 'Client Last Name'.
From the Shipping table, choose 'Shipping Address'.

Step 3: Select The Fields To Display

• At last hit the run button, as this
will display the result:

• The newly created merged table consists of the three fields that we selected
from the linked tables.

• Subsequently, you will observe that these three fields appear in the linked
tables. This is the process of merging Access table data using the inner join
method.

Method 3 : Merge Access Table Using Left Joins

• To retrieve the data, you can utilize either right or left joins.

Here, I will demonstrate an example focusing on achieving the query using left
joins.

• Let's consider the following scenario:

The first table is named "Employees.

" The second table is named "Orders.

" The third table is named "Order Details."

Method 3 : Merge Access Table Using Left Joins

▪ To begin, create a new query and add all three tables into the query.

Method 3 : Merge Access Table Using Left Joins

▪ Right-click on the join line between the "Orders" and "Employees" tables.
From the popup menu, select "Join Properties."

Method 3 : Merge Access Table Using Left Joins

▪ In the "Join Properties" window that appears, select the second option and
click the OK button.

Method 3 : Merge Access Table Using Left Joins

▪ This will modify your query appearance, displaying an arrow symbol on the
right side of the join line connecting the Orders and Employees tables.

Method 3 : Merge Access Table Using Left Joins

▪ Next, right-click on the join line between the Order Details and Orders tables.
From the popup menu, select the "Join Properties" option.

▪ In the opened Properties window, choose the second option and click the OK
button.

Method 3 : Merge Access Table Using Left Joins

▪ Select the fields that you want to include in the query results. I have chosen
the following fields:

Method 3 : Merge Access Table Using Left Joins

▪ When the query is executed, you will notice that the Quantity fields and
Order Date may contain blank values.

Method 3 : Merge Access Table Using Left Joins

▪ When the query is executed, you will notice that the Quantity fields and
Order Date may contain blank values.

This occurs because there are no matching records available in the respective
tables that satisfy the join criteria.

Еxercises
• The Northwind database is a sample database, designed to assist in learning and

demonstrations, etc. It demonstrates what an inventory/orders system might look
like for a mail order dry goods company.

• The Northwind sample database is based on a fictitious company called Northwind
Traders, which imports and exports specialty foods from around the world.

Using this database, please try to use different techniques from this practical lesson to
create an suitable forms.

Thank you for your
attention!

ON-LINE DISTANCE COURSE ON

DATABASES
❑ Module 5. Practice

❑ Topic 4. Merging of data into one form.
Presentation of an effective report.

❑ Practical lesson 2. Presentation of an effective report

Practical lesson. Presentation of an

effective report.

Joyce Cox, Joan Lambert.
Microsoft Access 2013 Step By
Step, Microsoft Press., 2013.

https://support.microsoft.com/en-us/access

https://www.customguide.com

Introduction to reports in Access

Creating Reports

If you need to provide information from your database to someone without granting
them access to your actual database, you can create a report. Reports enable you to
arrange and present your data in a visually appealing format that is easy for the
reader to understand. Access provides a user-friendly interface for creating and
customizing reports using data from queries or tables in your database.

Introduction to reports in Access

• Reports offer a way to view, format, and summarize the
information in your Microsoft Access database.

• For example, you can create a simple report of phone
numbers for all your contacts, or a summary report on
the total sales across different regions and time periods.

• From this particular lesson, you’ll get an overview of
reports in Access. You’ll also learn the basics of creating a
report, and using options like sorting, grouping, and
summarizing the data, and how to preview and print the
report.

Introduction to reports in Access

• A report is a database object that comes in handy when you want
to present the information in your database for any of the following
uses:

• Display or distribute a summary of data.

• Archive snapshots of the data.

• Provide details about individual records.

• Create labels.

• The design of a report is divided into sections that you can view in
the Design view. Understanding how each section works can helps
you create better reports. For example, the section in which you
choose to place a calculated control determines how Access
calculates the results. The following list is a summary of the section
types and their uses:

Introduction to reports in Access
Section How the section is displayed when printed Where the section can be used

Report Header At the beginning of the report. Use the report header for information that might normally appear on a cover

page, such as a logo, a title, or a date. When you place a calculated control

that uses the Sum aggregate function in the report header, the sum calculated

is for the entire report. The report header is printed before the page header.

Page Header At the top of every page. Use a page header to repeat the report title on every page.

Group Header At the beginning of each new group of records. Use the group header to print the group name. For example, in a report that is

grouped by product, use the group header to print the product name. When

you place a calculated control that uses the Sum aggregate function in the

group header, the sum is for the current group. You can have multiple group

header sections on a report, depending on how many grouping levels you

have added. For more information about creating group headers and footers,

see the section Add grouping, sorting, or totals.

Detail Appears once for every row in the record source. This is where you place the controls that make up the main body of the report.

Group Footer At the end of each group of records. Use a group footer to print summary information for a group. You can have

multiple group footer sections on a report, depending on how many grouping

levels you have added.

Page Footer At the end of every page. Use a page footer to print page numbers or per-page information.

Report Footer At the end of the report.

Note: In Design view, the report footer appears below

the page footer. However, in all other views (Layout view,

for example, or when the report is printed or previewed),

the report footer appears above the page footer, just after

the last group footer or detail line on the final page.

Use the report footer to print report totals or other summary information for

the entire report.

Create a report in Access
• Step 1: Choose a record source

• The record source of a report can be a table, a named query, or an

embedded query. The record source must contain all of the rows

and columns of data you want display on the report.

• If the data is from an existing table or query, select the table or

query in the Navigation Pane, and then continue to Step 2.

• If the record source does not yet exist, do one of the following:

• Continue to Step 2 and use the Blank Report tool,

• Or

• Create the table(s) or query that contains the required data.

Select the query or table in the Navigation Pane, and then

continue to Step 2.

Create a report in Access
• Step 2: Choose a report tool

• The report tools are located on the Create tab of the ribbon, in

the Reports group. The following table describes the options:

Tool Description

Report Creates a simple, tabular report containing all of the fields in the

record source you selected in the Navigation Pane.

Report Design Opens a blank report in Design view, to which you can add the

required fields and controls.

Blank Report Opens a blank report in Layout view, and displays the Field List

from where you can add fields to the report

Report Wizard Displays a multiple-step wizard that lets you specify fields,

grouping/sorting levels, and layout options.

Labels Displays a wizard that lets you select standard or custom label

sizes, as well as which fields you want to display, and how you

want them sorted.

Create a report in Access
• Step 3: Create the report

1. Click the button for the tool you want to use. If a wizard appears, follow

the steps in the wizard and click Finish on the last page.

Access displays the report in Layout view.

2. Format the report to achieve the looks that you want:

a) Resize fields and labels by selecting them and then dragging the

edges until they are the size you want.

b) Move a field by selecting it (and its label, if present), and then

dragging it to the new location.

c) Right-click a field and use the commands on the shortcut menu to

merge or split cells, delete or select fields, and perform other

formatting tasks.

In addition, you can use the features described in the following

sections to make your report more attractive and readable.

Add grouping, sorting, or totals

• The fastest way to add grouping, sorting, or totals to a desktop

database report is to right-click the field to which you want to apply

the group, sort, or total, and then click the desired command on the

shortcut menu.

• You can also add grouping, sorting, or totals by using the Group,

Sort, and Total pane while the report is open in Layout view or

Design view:

1. If the Group, Sort, and Total pane is not already open, on

the Design tab, in the Grouping and Totals group, click Group

& Sort.

2. Click Add a group or Add a sort, and then select the field on

which you want to group or sort.

3. Click More on a grouping or sorting line to set more options

and to add totals.

Highlight data with conditional formatting
• Access includes tools for highlighting data on a report. You can add conditional

formatting rules for each control or group of controls, and in client reports, you can

also add data bars to compare data.

• To add conditional formatting to controls:

1. Right-click the report in the Navigation Pane and click Layout View.

2. Select the required controls and on the Format tab, in the Control

Formatting group, click Conditional Formatting.

3. In the Conditional Formatting Rules Manager dialog box, click New Rule.

4. In the New Formatting Rule dialog box, select a value under Select a rule type:

a) To create a rule that is evaluated for each record individually, select Check

values in the current record or use an expression.

b) To create a rule that compares records to each other by using data bars,

click Compare to other records.

Under Edit the rule description, specify the rule for when the formatting would be

applied as well as what formatting should be applied, and then click OK.

To create an additional rule for the same control or set of controls, repeat this procedure

from step 4.

Customizing color and fonts

• Try an App Theme options to customize the color and

fonts.

1. Open a report in Layout view by right-clicking it in the

Navigation Pane and then clicking Layout View.

2. From the Report Layout Tools options, on

the Design tab, click Themes and point the cursor

over the various themes in the gallery to preview the

effects. Click on a theme to select it, and then save

your report.

3. Use the Colors or Fonts galleries to set colors or

fonts independently.

Add a logo or background image
• You can add a logo or background image to a report and If you update the

image, the update is automatically made wherever the image is used in the

database.

• To add or remove an image:

1. In the Navigation Pane, right-click the report and click Layout View.

2. In the report, click the position where you want to add the image and on

the Design tab, in the Header/Footer group, click Logo.

3. Navigate to the image, and click Open. Access adds the image to the report.

4. To remove the image, right-click the image and click Delete from the

shortcut menu.

• To add a background image:

1. In the Navigation Pane, right-click the report and click Layout View.

2. On the Format tab, in the Background group, click Background Image.

3. Select an image from the Image Gallery list or click Browse, select an

image, and then click OK.

Preview a report

1. Right-click the report in the Navigation Pane and

click Print Preview. You can use the commands on

the Print Preview tab to do any of the following:

a. Print the report

b. Adjust page size or layout

c. Zoom in or out, or view multiple pages at a time

d. Refresh the data on the report

e. Export the report to another file format.

2. Click Close Print Preview.

Print a report

• To print a report without previewing it:

• Right-click the report in the Navigation Pane

and click Print. The report is sent to your

default printer.

Note: If you select the report in the Navigation Pane and

select Print from the File tab, you can select additional

printing options such as number of pages and copies and

specify a printer.

• To open a dialog box where you can select a

printer, specify the number of copies, and so

on, click Print.

Example to create a report:
Reports offer the functionality to present sections of your database in a clear and

printable layout. Access allows you to generate reports from both tables and
queries.

1. Access the table or query that you wish to incorporate into your report. For
instance, if we intend to print a list of cookies sold, we will open the Cookies Sold

query.

2.Click on the Create tab located in the Ribbon. Find the Reports group and
select the Report command.

3. Access will create a new report based on your object.

4. It is possible that some of your

data might be positioned beyond
the page break. To resolve this, you
can adjust the size of your fields. To
do so, select a field and resize it by
clicking and dragging its edge until
it reaches the desired size. Repeat
this process for other fields until all
the fields fit appropriately.

5. To save your report, simply click on the Save command located on the Quick
Access Toolbar. You will be prompted to enter a name for your report, after
which you can click OK to complete the saving process.

Similar to tables and queries, reports in Access can also be sorted and filtered.
You can accomplish this by right-clicking on the field that you want to sort or
filter and selecting the appropriate option from the menu that appears.

Deleting fields
You may discover that your report includes certain fields that are not necessary
for viewing. For example, our report includes the Zip Code field, which is not
relevant for a list of orders. The good news is that you can remove fields from
reports without affecting the table or query from which you extracted the data.

Example to delete a field in a report:
1.Click on any cell within the field you wish to remove, and then press the Delete

key on your keyboard.

2. The field will be deleted.

When removing a field, make sure to also delete its corresponding header. Select
the header and press the Delete key to remove it.

Example to printing and saving reports in Print Preview:
In addition to using commands in Backstage view to print reports, you can utilize Print Preview.
Print Preview provides a preview of your report's appearance on the printed page. It enables you
to make adjustments to the display of your report, print it, and even save it in a different file
format.

To print a report:

1.From the Home tab, choose the View option, and
then select Print Preview from the available options.
This will display your report exactly as it will appear
when printed.

To print a report:
2. If needed, you can adjust the page size, margin width, and page orientation using
the respective commands available on the Ribbon.

To print a report:
3. Click the Print button.

4. The Print dialog box will be displayed. Configure any desired print settings,
and then click OK. The report will be printed accordingly.

To export a report:
1. Click on the View command in the Home tab and choose Print Preview from the
drop-down list.

2. Find the Data group on the Ribbon.

3. Choose one of the available file type options or click More to explore additional
options for saving your report as a Word or HTML file.

To export a report:

4. A dialog box will be displayed,
allowing you to choose the
destination where you wish to save
the report.

5.Specify a file name for the report
and click on the Publish button to
proceed.

6. A dialog box will be shown
indicating that your file has
been saved successfully. Click
the Close button to go back to
your report.

In some cases, specific export
options may trigger the Export
Wizard to appear. Simply follow
the provided instructions to
export your report accordingly.

Guide to designingе effective reports

• When you design a report, you must first

consider how you want the data arranged on the

page and how the data is stored in the database.

• During the design process, you might even

discover that the arrangement of data in the

tables will not allow you to create the report that

you want.

• This can be an indication that the tables are not

normalized — this means that the data is not

stored in the most efficient manner.

Guide to designingе effective reports

• Make a sketch of your report

– This step is not required — you might find that the

Access Report Wizard or the Report tool (both of which

are available on the Create tab, in the Reports group)

provide a sufficient starting design for your report.

However, if you decide to design your report without

using these tools, you might find it helpful to make a

rough sketch of your report on a piece of paper by

drawing a box where each field goes and writing the

field name in each box. Alternatively, you can use

programs such as Word or Visio to create a mockup of

the report. Whichever method that you use, be sure to

include enough rows to indicate how the data repeats.

Guide to designingе effective reports

• Make a sketch of your report

For example, you can use a row for product

information, then several repeating rows

for that product's sales, and finally a row of

sales totals for the product. Then, the

sequence repeats for the next product and

so on until the end of the report. Or,

perhaps your report is a simple listing of

the data in the table, in which case your

sketch can contain just a series of rows and

columns.

Guide to designingе effective reports

• Make a sketch of your report

– After you create your sketch, determine which table or

tables contain the data that you want to display on the

report. If all the data is contained in a single table, you

can base your report directly on that table. More often,

the data that you want is stored in several tables that

you must pull together in a query, before you can

display it on the report. The query can be embedded in

the RecordSource property of the report, or you can

create a separate, saved query and base the report on

that.

Guide to designingе effective reports

• Decide which data to put in each report section

– Each report has one or more report sections. The one section that is

present in every report is the Detail section. This section repeats

once for each record in the table or query that the report is based

on. Other sections are optional and repeat less often and are usually

used to display information that is common to a group of records, a

page of the report, or the entire report.

• Decide how to arrange the detail data

– Most reports are arranged in either a tabular or a stacked layout, but

Access gives you the flexibility to use just about any arrangement of

records and fields that you want.

– Tabular layout A tabular layout is similar to a spreadsheet. Labels

are across the top, and the data is aligned in columns below the

labels.

Guide to designingе effective reports

• Decide how to arrange the detail data

Tabular refers to the table-like appearance

of the data. This is the type of report that

Access creates when you click Report in

the Reports group of the Create tab. The

tabular layout is a good one to use if your

report has a relatively small number of

fields that you want to display in a simple

list format. The following illustration shows

an employee report that was created by

using a tabular layout.

Guide to designingе effective reports

• Decide how to arrange the detail data

Stacked layout A stacked layout

resembles a form that you fill out when you

open a bank account or make a purchase

from an online retailer. Each piece of data is

labeled, and the fields are stacked on top

of each other. This layout is good for

reports that contain too many fields to

display in a tabular format — that is, the

width of the columns would exceed the

width of the report. The following

illustration shows an employee report that

was created by using a stacked layout.

Guide to designingе effective reports

• Decide how to arrange the detail data
Mixed layout You can mix elements of

tabular and stacked layouts. For example,

for each record, you can arrange some of

the fields in a horizontal row at the top of

the Detail section and arrange other fields

from the same record in one or more

stacked layouts beneath the top row. The

following illustration shows an employee

report that was created by using a mixed

layout. The ID, Last Name, and First Name

fields are arranged in a tabular control

layout, and the Job Title and Business

Phone fields are arranged in a stacked

layout. In this example, gridlines are used

to provide a visual separation of fields for

each employee.

Guide to designingе effective reports

• Decide how to arrange the detail data

Justified layout If you use the

Report Wizard to create your

report, you can choose to use a

justified layout. This layout uses the

full width of the page to display the

records as compactly as possible.

Of course, you can achieve the

same results without using the

Report Wizard, but it can be a

painstaking process to align the

fields exactly. The following

illustration shows an employee

report that was created by using

the Report Wizard's justified layout.

Use control layouts to align your data
Control layouts are guides that you can add to a report

while it is open in Layout view or Design view. Access adds

control layouts automatically when you use the Report

Wizard to build a report, or when you create a report by

clicking Report in the Reports group of the Create tab. A

control layout is like a table, each cell of which can contain a

label, a text box, or any other type of control. The following
illustration shows a tabular control layout on a report.

The orange lines indicate the rows and columns of the

control layout, and they are visible only when the report is

open in Layout view or Design view. Control layouts help you

achieve a uniform alignment of data in rows and columns,

and they make it easier to add, resize, or remove fields. By

using the tools in the Table and Position groups on

the Arrange tab (available in Layout view or Design view),

you can change one type of control layout to another, and

you can remove controls from layouts so that you can
position the controls wherever you want on the report.

Add or remove report or page header and
footer sections

• The headers and footers are report sections that you can use
to display information that is common to the entire report, or
to each page of a report.

• For example, you can add a Page Footer section to display a
page number at the bottom of each page, or you can add a
Report Header section to display a title for the entire report.

• Add report or page header and footer sections:
1. In the Navigation Pane, right-click the report that you want to change, and then

click Design View on the shortcut menu.

2. Verify which sections are already on the report. The sections are separated by

shaded horizontal bars called section selectors. The label on each section

selector indicates what the section directly below it is.

Add or remove report or page header and
footer sections

• Add report or page header and footer sections:

3. To add page header and footer sections or report header and footer sections to

your report, right-click any section selector and then click Page

Header/Footer or Report Header/Footer on the shortcut menu.

Every report has a Detail section and can also contain

Report Header, Page Header, Page Footer, and Report

Footer sections. In addition, if there are grouping levels

in the report, you might see group headers or footers

(such as the File As Header shown in the preceding

illustration). By default, group headers and footers are

named by using the field name or expression that is the

basis of the group. In this case, the name of the
grouping field is "File As."

Add or remove report or page header and
footer sections

• Remove report or page header and footer sections

1. In the Navigation Pane, right-click the report that you want to

change, and then click Design View on the shortcut menu.

2. Right-click any section selector and then click Page

Header/Footer or Report Header/Footer on the shortcut menu.

If you are removing a header and footer pair and those sections contain

controls, Access warns you that deleting the sections will also delete

the controls and that you will not be able to undo the action.

Click Yes to remove the sections and delete the controls, or click No to

cancel the operation.

Tips for formatting different data types

• When you create a report by using the Report tool (available on the Create tab,

in the Reports group), or by using the Report Wizard, Access adds the fields to

the report for you and creates the most appropriate control to display each field,

based on the field's data type.

• If you are adding fields to a report yourself, the preferred method is to drag each

field from the Field List to the report.

• As with the Report Wizard or the Report tool, Access creates the most

appropriate control for each field, depending on the field's data type. For most

data types, the most appropriate (default) control to use is the text box.

• The following sections provide tips about how to format some of the special

case data types.

• Multivalued fields The default control for a multivalued field is a combo box.

This can seem like a strange choice for a control on a report, because you can't

click the arrow on a combo box in a report. However, in the context of a report, a

combo box behaves like a text box. The arrow is visible only in Design view.

Tips for formatting different data types

• If the field contains multiple values, those values are separated by commas. If the

combo box is not wide enough to display all the values on one line and

the CanGrow property of the combo box is set to Yes, the values wrap to the

next line.

• Otherwise, the values are truncated. To set the CanGrow property for a control,

open the report in Design view or Layout view, click the control, and then press

F4 to display the control's property sheet. The CanGrow property is located on

both the Format tab and the All tab of the property sheet for the control.

• Rich text fields The default control for a rich text field is a text box. If the text

box is not wide enough to display all the values on one line and

the CanGrow property of the text box is set to Yes, the values wrap to the next

line.

• Otherwise, the values are truncated. To set the CanGrow property for a control,

open the report in Design view or Layout view, click the control, and then press

F4 to display the control's property sheet. The CanGrow property is located on

both the Format tab and the All tab of the property sheet for the control.

Good sample report

Еxercises
• The Northwind database is a sample database, designed to assist in learning and

demonstrations, etc. It demonstrates what an inventory/orders system might look
like for a mail order dry goods company.

• The Northwind sample database is based on a fictitious company called Northwind
Traders, which imports and exports specialty foods from around the world.

Using this database, please try to use different techniques from this practical lesson to
create an effective report.

Thank you for your
attention!

	Course Objectives and Learning Outcomes
	Slide 1: Course Objectives:
	Slide 2: Learning Outcomes:

	STRUCTURE OF THE COURSE_Databases
	M1_T1_L1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: INTRODUCTION TO DATABASE
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: WHAT IS DATABASE
	Slide 6: WHAT IS DATABASE
	Slide 7: WHAT IS DATABASE
	Slide 8: WHAT IS DATABASE
	Slide 9: WHAT IS DATABASE
	Slide 10: WHAT IS DATABASE
	Slide 11: WHAT IS DATABASE
	Slide 12: WHAT IS DATABASE
	Slide 13: WHAT IS DATABASE
	Slide 14: WHAT IS DATABASE
	Slide 15: WHAT IS DATABASE
	Slide 16: WHAT IS DATABASE
	Slide 17: WHAT IS DATABASE
	Slide 18: WHAT IS DATABASE
	Slide 19: DATA INDEPENDENCE
	Slide 20: DATA INDEPENDENCE
	Slide 21: DBS: Definitions and Rationale
	Slide 22: DBS: Definitions and Rationale
	Slide 23: DBS: Definitions and Rationale
	Slide 24: DBS: Definitions and Rationale
	Slide 25: DBS: Conclusion
	Slide 26: DB: Conclusion
	Slide 27: Questions and exercises:
	Slide 28

	M1_T1_L2.
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: INTRODUCTION TO DATABASE MANAGEMENT SYSTEM (DBMS)
	Slide 3: DBMS
	Slide 4: DBMS
	Slide 5: DBMS
	Slide 6: DBMS
	Slide 7: DBMS
	Slide 8: DBMS
	Slide 9: DBMS
	Slide 10: DBMS
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: DBMS
	Slide 16: DBMS
	Slide 17: DBMS
	Slide 18: DBMS
	Slide 19: DBMS - Conclusion
	Slide 20: DBMS - Conclusion
	Slide 21: DBMS - Conclusion
	Slide 22: DBMS - Conclusion
	Slide 23: DBMS - Conclusion
	Slide 24: DBMS - Conclusion
	Slide 25: DBMS - Conclusion
	Slide 26: Questions and exercises:
	Slide 27

	M1_T2_L1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: LOGICAL FOUNDATIONS OF DATABASES
	Slide 3: INTRODUCTION
	Slide 4: Database Design
	Slide 5: Purpose of Database Design
	Slide 6: Purpose of Database Design
	Slide 7: Process of Database Design
	Slide 8
	Slide 9: Process of Database Design
	Slide 10: Deliverables and Outcomes
	Slide 11: Relational Database Model
	Slide 12: Designing Forms and Reports
	Slide 13: Designing Forms and Reports: Key Concepts
	Slide 14: The Process of Designing Forms and Reports
	Slide 15: The Process of Designing Forms and Reports
	Slide 16
	Slide 17: Deliverables and Outcomes
	Slide 18: General Formatting Guidelines for Forms and Reports
	Slide 19
	Slide 20: General Formatting Guidelines for Forms and Reports
	Slide 21: General Formatting Guidelines for Forms and Reports
	Slide 22: General Formatting Guidelines for Forms and Reports
	Slide 23: General Formatting Guidelines for Forms and Reports
	Slide 24
	Slide 25: Designing Interfaces and Dialogues
	Slide 26: The Process of Designing Interfaces and Dialogues
	Slide 27: The Process of Designing Interfaces and Dialogues
	Slide 28: Designing Interfaces
	Slide 29: Designing Layouts
	Slide 30: Designing Layouts
	Slide 31: Structuring Data Entry
	Slide 32: Controlling Data Input
	Slide 33: Example
	Slide 34
	Slide 35: Conclusion
	Slide 36: Questions and exercises:
	Slide 37

	M1_T2_L2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: PHYSICAL FOUNDATIONS OF DATABASES
	Slide 3: INTRODUCTION
	Slide 4: INTRODUCTION
	Slide 5: INTRODUCTION
	Slide 6: FILES. BASIC CONCEPTS.
	Slide 7: FILES. BASIC CONCEPTS.
	Slide 8: FILES. BASIC CONCEPTS.
	Slide 9: FILES. BASIC CONCEPTS.
	Slide 10: FILES. BASIC CONCEPTS.
	Slide 11: FILES. BASIC CONCEPTS.
	Slide 12: FILES. BASIC CONCEPTS.
	Slide 13: FILES. BASIC CONCEPTS.
	Slide 14: FILES. BASIC CONCEPTS.
	Slide 15: FILES. BASIC CONCEPTS.
	Slide 16: FILES. BASIC CONCEPTS.
	Slide 17: FILES. BASIC CONCEPTS.
	Slide 18: FILES. BASIC CONCEPTS.
	Slide 19: FILES. BASIC CONCEPTS.
	Slide 20: FILES. BASIC CONCEPTS.
	Slide 21: PHYSICAL DATA ORGANISATION TASKS.
	Slide 22: PHYSICAL DATA ORGANISATION TASKS.
	Slide 23: PHYSICAL DATA ORGANISATION TASKS.
	Slide 24: PHYSICAL DATA ORGANISATION TASKS.
	Slide 25: PHYSICAL DATA ORGANISATION TASKS.
	Slide 26: PHYSICAL DATA ORGANISATION TASKS.
	Slide 27
	Slide 28: Questions and exercises:
	Slide 29

	M1_T3_L1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: WHAT IS A DATABASE MODEL. TYPES OF DATA MODELS.
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: What is a data model?
	Slide 7: What is a data model?
	Slide 8: What is a data model?
	Slide 9: Important types of data models
	Slide 10: OBJECTS AND THEIR DESCRIPTION
	Slide 11: OBJECTS AND THEIR DESCRIPTION
	Slide 12: OBJECTS AND THEIR DESCRIPTION
	Slide 13: OBJECTS AND THEIR DESCRIPTION
	Slide 14: OBJECTS AND THEIR DESCRIPTION
	Slide 15: OBJECTS AND THEIR DESCRIPTION
	Slide 16: OBJECTS AND THEIR DESCRIPTION
	Slide 17: OBJECTS AND THEIR DESCRIPTION
	Slide 18: OBJECTS AND THEIR DESCRIPTION
	Slide 19: OBJECTS AND THEIR DESCRIPTION
	Slide 20: OBJECTS AND THEIR DESCRIPTION
	Slide 21: OBJECTS AND THEIR DESCRIPTION
	Slide 22: OBJECTS AND THEIR DESCRIPTION
	Slide 23: OBJECTS AND THEIR DESCRIPTION
	Slide 24: OBJECTS AND THEIR DESCRIPTION
	Slide 25: OBJECTS AND THEIR DESCRIPTION
	Slide 26: OBJECTS AND THEIR DESCRIPTION
	Slide 27: Questions and exercises:
	Slide 28

	M1_T3_L2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: Database Languages in DBMS: Data description languages. Data manipulation languages.
	Slide 3: Data definition language
	Slide 4: Data definition language
	Slide 5: Data definition language
	Slide 6: Data definition language
	Slide 7: Data definition language
	Slide 8: Data definition language
	Slide 9: Data definition language
	Slide 10: Data definition language
	Slide 11: Data manipulation languages
	Slide 12: Data manipulation languages
	Slide 13: Data manipulation languages
	Slide 14: Data manipulation languages
	Slide 15: Data manipulation languages
	Slide 16: Data manipulation and data definition languages
	Slide 17: Data manipulation and data definition languages
	Slide 18: Graph data models
	Slide 19: NETWORK DATA MODELS
	Slide 20: NETWORK DATA MODELS
	Slide 21: HIERARCHICAL DATA MODELS
	Slide 22: HIERARCHICAL DATA MODELS
	Slide 23: HIERARCHICAL DATA MODELS
	Slide 24: HIERARCHICAL DATA MODELS
	Slide 25: HIERARCHICAL DATA MODELS
	Slide 26: HIERARCHICAL DATA MODELS
	Slide 27: “Entity – Relationship” Data models
	Slide 28: “Entity – Relationship” Data models
	Slide 29: “Entity – Relationship” Data models
	Slide 30: “Entity – Relationship” Data models
	Slide 31: Questions and exercises:
	Slide 32

	M1_T4_L1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: BASIC SEARCH METHODS
	Slide 3: Problem: Search
	Slide 4: Search
	Slide 5: BASIC SEARCH METHODS
	Slide 6: BASIC SEARCH METHODS
	Slide 7: BASIC SEARCH METHODS
	Slide 8: BASIC SEARCH METHODS
	Slide 9: BASIC SEARCH METHODS
	Slide 10: Linear search summary
	Slide 11: Pseudocode for Linear search
	Slide 12: Linear search analysis
	Slide 13: Worst case time for linear search
	Slide 14: Average case for linear search
	Slide 15: Average case time for linear search
	Slide 16: BASIC SEARCH METHODS
	Slide 17: BASIC SEARCH METHODS
	Slide 18: BASIC SEARCH METHODS
	Slide 19: BASIC SEARCH METHODS
	Slide 20: Binary Search Pseudocode
	Slide 21: Binary Search
	Slide 22: Binary Search
	Slide 23: Binary Search
	Slide 24: Binary Search
	Slide 25: Binary Search
	Slide 26: Binary Search
	Slide 27: Binary Search
	Slide 28: Binary Search
	Slide 29: Binary Search
	Slide 30: Binary Search
	Slide 31: Binary Search
	Slide 32: Binary Search Implementation
	Slide 33: BASIC SEARCH METHODS
	Slide 34: Questions and exercises:
	Slide 35

	M1_T4_L2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: TYPES OF DATABASE FILES
	Slide 3: INDEX FILES
	Slide 4: INDEX FILES
	Slide 5: INDEX FILES
	Slide 6: INDEX FILES
	Slide 7: INDEX FILES
	Slide 8: INDEX FILES
	Slide 9: INDEX FILES
	Slide 10: INDEX FILES
	Slide 11: INDEX FILES
	Slide 12: INDEX FILES
	Slide 13: INDEX FILES
	Slide 14: INDEX FILES
	Slide 15: B-Trees
	Slide 16: B-Trees
	Slide 17: B-Trees
	Slide 18: HASH-FILES
	Slide 19: HASH-FILES
	Slide 20: HASH-FILES
	Slide 21: HASH-FILES
	Slide 22: HASH-FILES
	Slide 23: HASH-FILES
	Slide 24: HASH-FILES
	Slide 25: HASH-FILES
	Slide 26: HASH-FILES
	Slide 27: Questions and exercises:
	Slide 28

	M2_T1_L1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: RELATIONAL APPROACH. RELATIONAL MODEL.
	Slide 3: RELATIONAL MODEL
	Slide 4: RELATIONAL MODEL
	Slide 5: RELATIONAL MODEL
	Slide 6: RELATIONAL STRUCTURES
	Slide 7: RELATIONAL STRUCTURES
	Slide 8: RELATIONAL STRUCTURES
	Slide 9: RELATIONAL STRUCTURES
	Slide 10: RELATIONAL STRUCTURES
	Slide 11: RELATIONAL STRUCTURES
	Slide 12: RELATIONAL STRUCTURES
	Slide 13: RELATIONAL STRUCTURES
	Slide 14: RELATIONAL STRUCTURES
	Slide 15: RELATIONAL STRUCTURES
	Slide 16: RELATIONAL STRUCTURES
	Slide 17: RELATIONAL STRUCTURES
	Slide 18: REALTION KEY
	Slide 19: REALTION KEY
	Slide 20: REALTION KEY
	Slide 21: REALTION KEY
	Slide 22: REALTION KEY
	Slide 23: REALTION KEY
	Slide 24: RELATION CHARACTERISTICS
	Slide 25: TYPES OF REALTIONSHIPS
	Slide 26: TYPES OF REALTIONSHIPS
	Slide 27: TYPES OF REALTIONSHIPS
	Slide 28: Questions and exercises:
	Slide 29

	M2_T1_L2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: RELATIONAL ALGEBRA
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Introduction
	Slide 8: Introduction
	Slide 9: Introduction
	Slide 10: Relational operators - UNION
	Slide 11: Relational operators - UNION
	Slide 12: Relational operators - DIFFERENCE
	Slide 13: Relational operators - DIFFERENCE
	Slide 14: Relational operators - CARTESIAN PRODUCT
	Slide 15: Relational operators - CARTESIAN PRODUCT
	Slide 16: Relational operators - Projection
	Slide 17: Relational operators - Projection
	Slide 18: Relational operators - Projection
	Slide 19: GRAPHIC INDICATIONS
	Slide 20: Relational operators - RESTRICTION
	Slide 21: Relational operators - SECTION
	Slide 22: Relational operators - QUOTIENT
	Slide 23: Relational operators - QUOTIENT
	Slide 24: Conclusion
	Slide 25: Questions and exercises:
	Slide 26

	M2_T2_L1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: RELATIONAL LANGUAGES. TYPES OF RELATIONAL LANGUAGES.
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: ALPHA LANGUAGE
	Slide 8: ALPHA LANGUAGE
	Slide 9: ALPHA LANGUAGE
	Slide 10: ALPHA LANGUAGE
	Slide 11: ALPHA LANGUAGE
	Slide 12: ALPHA LANGUAGE
	Slide 13: QBE LANGUAGE
	Slide 14: QBE LANGUAGE
	Slide 15: QBE LANGUAGE
	Slide 16: QBE LANGUAGE
	Slide 17: QBE LANGUAGE
	Slide 18: QBE LANGUAGE
	Slide 19: QBE LANGUAGE
	Slide 20: QBE LANGUAGE
	Slide 21: QBE LANGUAGE
	Slide 22: QBE LANGUAGE
	Slide 23: QBE LANGUAGE
	Slide 24: QBE LANGUAGE
	Slide 25: QBE LANGUAGE
	Slide 26: QBE LANGUAGE
	Slide 27: QBE LANGUAGE
	Slide 28: QBE LANGUAGE
	Slide 29: Questions and exercises:
	Slide 30

	M2_T2_L2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: SQL RELATIONAL LANGUAGE. DATA SELECTION. BUILT-IN FUNCTIONS. DATA UPDATING
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: DATA SELECTION
	Slide 8: DATA SELECTION
	Slide 9: DATA SELECTION
	Slide 10: DATA SELECTION
	Slide 11: DATA SELECTION
	Slide 12: DATA SELECTION
	Slide 13: DATA SELECTION
	Slide 14: DATA SELECTION
	Slide 15: DATA SELECTION
	Slide 16: DATA SELECTION
	Slide 17: DATA SELECTION
	Slide 18: DATA SELECTION
	Slide 19: DATA SELECTION
	Slide 20: Built-in functions
	Slide 21: Built-in functions
	Slide 22: Built-in functions
	Slide 23: DATA UPDATING
	Slide 24: DATA UPDATING
	Slide 25: DATA UPDATING
	Slide 26: DATA UPDATING
	Slide 27: DATA UPDATING
	Slide 28: DATA UPDATING
	Slide 29: DATA UPDATING
	Slide 30: DATA UPDATING
	Slide 31: Questions and exercises:
	Slide 32

	M2_T3_L1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: BASIC CHARACTERISTICS AND CLASSIFICATION OF RELATIONAL SYSTEMS.
	Slide 3: Introduction
	Slide 4: Basic characteristics of relational systems.
	Slide 5: Basic characteristics of relational systems.
	Slide 6: Relational systems classification
	Slide 7: Relational systems classification
	Slide 8: Relational systems classification
	Slide 9: Relational systems classification
	Slide 10: Relational systems classification
	Slide 11: An overview of some basic relational systems
	Slide 12: An overview of some basic relational systems
	Slide 13: An overview of some basic relational systems
	Slide 14: An Overview of some basic relational systems
	Slide 15: An Overview of some basic relational systems
	Slide 16: An Overview of some basic relational systems
	Slide 17: An Overview of some basic relational systems
	Slide 18: An Overview of some basic relational systems
	Slide 19: An Overview of some basic relational systems
	Slide 20: An Overview of some basic relational systems
	Slide 21: An Overview of some basic relational systems
	Slide 22: An Overview of some basic relational systems
	Slide 23: An Overview of some basic relational systems
	Slide 24: An Overview of some basic relational systems
	Slide 25: Questions and exercises:
	Slide 26

	M2_T3_L2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: RELATIONAL SCHEMA ANALYSIS. FUNCTIONAL DEPENDENCIES.
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Introduction
	Slide 7: Introduction
	Slide 8: Introduction
	Slide 9: FUNCTIONAL DEPENDENCIES
	Slide 10: FUNCTIONAL DEPENDENCIES
	Slide 11: FUNCTIONAL DEPENDENCIES
	Slide 12: FUNCTIONAL DEPENDENCIES
	Slide 13: FUNCTIONAL DEPENDENCIES
	Slide 14: FUNCTIONAL DEPENDENCIES
	Slide 15: AXIOMATICS OF FUNCTIONAL DEPENDENCIES
	Slide 16: AXIOMATICS OF FUNCTIONAL DEPENDENCIES
	Slide 17: AXIOMATICS OF FUNCTIONAL DEPENDENCIES
	Slide 18: AXIOMATICS OF FUNCTIONAL DEPENDENCIES
	Slide 19: AXIOMATICS OF FUNCTIONAL DEPENDENCIES
	Slide 20: AXIOMATICS OF FUNCTIONAL DEPENDENCIES
	Slide 21: AXIOMATICS OF FUNCTIONAL DEPENDENCIES
	Slide 22: CLOSURES AND COVERS
	Slide 23: CLOSURES AND COVERS
	Slide 24: CLOSURES AND COVERS
	Slide 25: CLOSURES AND COVERS
	Slide 26: CLOSURES AND COVERS
	Slide 27: Questions and exercises:
	Slide 28

	M2_T4_L1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: NORMALIZATION OF RELATIONAL SCHEMAS. NORMAL FORMS.
	Slide 3: Normalization of relational schemas. Normal forms.
	Slide 4: Normalization of relational schemas. Normal forms.
	Slide 5: NORMAL FORMS
	Slide 6: NORMAL FORMS
	Slide 7: NORMAL FORMS
	Slide 8: NORMAL FORMS
	Slide 9: NORMAL FORMS
	Slide 10: NORMAL FORMS
	Slide 11: NORMAL FORMS
	Slide 12: NORMAL FORMS
	Slide 13: NORMAL FORMS
	Slide 14: NORMAL FORMS
	Slide 15: NORMAL FORMS
	Slide 16: NORMAL FORMS
	Slide 17: NORMAL FORMS
	Slide 18: NORMAL FORMS
	Slide 19: NORMAL FORMS
	Slide 20: NORMAL FORMS
	Slide 21: NORMAL FORMS
	Slide 22: NORMAL FORMS
	Slide 23: NORMAL FORMS
	Slide 24: NORMAL FORMS
	Slide 25: NORMAL FORMS
	Slide 26: NORMAL FORMS
	Slide 27: NORMAL FORMS
	Slide 28: NORMAL FORMS
	Slide 29: NORMAL FORMS
	Slide 30: NORMAL FORMS
	Slide 31: CONCLUSION
	Slide 32: CONCLUSION
	Slide 33: Questions and exercises:
	Slide 34

	M2_T4_L2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: DECOMPOSITION AND SYNTHESIS OF RELATIONAL SCHEMAS. NORMALIZATION ALGORITHM BY DECOMPOSITION. ALGORITHM FOR SYNTHESIS OF RELATIONAL SCHEMAS.
	Slide 3: Normalization algorithm by decomposition
	Slide 4: Normalization algorithm by decomposition
	Slide 5: Normalization algorithm by decomposition
	Slide 6: Normalization algorithm by decomposition
	Slide 7: Normalization algorithm by decomposition
	Slide 8: Normalization algorithm by decomposition
	Slide 9: Normalization algorithm by decomposition
	Slide 10: Normalization algorithm by decomposition
	Slide 11: Normalization algorithm by decomposition
	Slide 12: Normalization algorithm by decomposition
	Slide 13: Normalization algorithm by decomposition
	Slide 14: Normalization algorithm by decomposition
	Slide 15: Normalization algorithm by decomposition
	Slide 16: Normalization algorithm by decomposition
	Slide 17: Normalization algorithm by decomposition
	Slide 18: Normalization algorithm by decomposition
	Slide 19: Normalization algorithm by decomposition
	Slide 20: Algorithm for relational schemas synthesis
	Slide 21: Algorithm for relational schemas synthesis
	Slide 22: Algorithm for relational schemas synthesis
	Slide 23: Algorithm for relational schemas synthesis
	Slide 24: Algorithm for relational schemas synthesis
	Slide 25: Algorithm for relational schemas synthesis
	Slide 26: Algorithm for relational schemas synthesis
	Slide 27: Questions and exercises:
	Slide 28

	M2_T5_L1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: THE ESSENCE OF OBJECTS. BASIC CONCEPTS IN THE OBJECT-ORIENTED APPROACH.
	Slide 3: OBJECT NATURES
	Slide 4: OBJECT NATURES
	Slide 5: OBJECT NATURES
	Slide 6: OBJECT NATURES
	Slide 7: OBJECT NATURES
	Slide 8: OBJECT NATURES
	Slide 9: OBJECT NATURES
	Slide 10: OBJECT NATURES
	Slide 11: OBJECT NATURES
	Slide 12: Basic concepts in the object-oriented approach
	Slide 13: Basic concepts in the object-oriented approach
	Slide 14: Basic concepts in the object-oriented approach
	Slide 15: Basic concepts in the object-oriented approach
	Slide 16: Basic concepts in the object-oriented approach
	Slide 17: Basic concepts in the object-oriented approach
	Slide 18: Basic concepts in the object-oriented approach
	Slide 19: Basic concepts in the object-oriented approach
	Slide 20: Basic concepts in the object-oriented approach
	Slide 21: Basic concepts in the object-oriented approach
	Slide 22: Basic concepts in the object-oriented approach
	Slide 23: CONCLUSION
	Slide 24: CONCLUSION
	Slide 25: CONCLUSION
	Slide 26: CONCLUSION
	Slide 27: Questions and exercises:
	Slide 28

	M2_T5_L2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: OBJECT-ORIENTED DATABASE MANAGEMENT SYSTEMS. ARCHITECTURE.
	Slide 3: Object-oriented DBMS
	Slide 4: Object-oriented DBMS
	Slide 5: Object-oriented DBMS
	Slide 6: Object-oriented DBMS
	Slide 7: Object-oriented DBMS
	Slide 8: Object-oriented DBMS
	Slide 9: Object-oriented DBMS
	Slide 10: Object-oriented DBMS
	Slide 11: Object-oriented DBMS
	Slide 12: Object-oriented DBMS
	Slide 13: Object-oriented DBMS
	Slide 14: Object-oriented DBMS
	Slide 15: Object-oriented DBMS
	Slide 16: Object-oriented DBMS
	Slide 17: Object-oriented DBMS
	Slide 18: Object-oriented DBMS
	Slide 19: Architecture of object-oriented DBMS
	Slide 20: Architecture of object-oriented DBMS
	Slide 21: Architecture of object-oriented DBMS
	Slide 22: Architecture of object-oriented DBMS
	Slide 23: Architecture of object-oriented DBMS
	Slide 24: Architecture of object-oriented DBMS
	Slide 25: Architecture of object-oriented DBMS
	Slide 26: Architecture of object-oriented DBMS
	Slide 27: Benefits of OODBMS
	Slide 28: Questions and exercises:
	Slide 29

	M3_T1_L1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: THE ROLE OF ALGORITHMS IN COMPUTATION. ALGORITHMS AS A TECHNOLOGY.
	Slide 3: Introduction
	Slide 4: Algorithms
	Slide 5: Algorithms
	Slide 6: Algorithms
	Slide 7: Algorithms
	Slide 8: Algorithms
	Slide 9: Algorithms
	Slide 10: Algorithms
	Slide 11: Algorithms
	Slide 12: Algorithms
	Slide 13: Algorithms
	Slide 14: Algorithms
	Slide 15: Algorithms
	Slide 16: Algorithms
	Slide 17: Algorithms as a technology
	Slide 18: Algorithms as a technology
	Slide 19: Algorithms as a technology
	Slide 20: Algorithms properties
	Slide 21: Algorithms properties
	Slide 22: Algorithms properties
	Slide 23: Algorithms properties
	Slide 24: Algorithms properties
	Slide 25: Algorithms properties
	Slide 26: Algorithms properties
	Slide 27: Conclusion
	Slide 28: Questions and exercises:
	Slide 29

	M3_T1_L2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: DESIGN AND ANALYSIS OF ALGORITHMS
	Slide 3: Analysis of algorithms
	Slide 4: Analysis of algorithms
	Slide 5: Analysis of algorithms
	Slide 6: Analysis of algorithms
	Slide 7: Analysis of algorithms
	Slide 8: Analysis of algorithms
	Slide 9: Analysis of algorithms
	Slide 10: Analysis of algorithms
	Slide 11: Analysis of algorithms
	Slide 12: Analysis of algorithms
	Slide 13: Analysis of algorithms
	Slide 14: Analysis of algorithms
	Slide 15: Analysis of algorithms
	Slide 16: Analysis of algorithms
	Slide 17: Design of algorithms
	Slide 18: Design of algorithms
	Slide 19: Design of algorithms
	Slide 20: Design of algorithms
	Slide 21: Summary
	Slide 22: Summary
	Slide 23: Questions and exercises:
	Slide 24

	M3_T1_L3
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: COMPLEXITY OF ALGORITHMS. TYPES OF COMPLEXITY AND THEIR EVALUATION.
	Slide 3: Introduction
	Slide 4: Techniques for analyzing algorithms
	Slide 5: Techniques for analyzing algorithms
	Slide 6: Techniques for analyzing algorithms
	Slide 7: Techniques for analyzing algorithms
	Slide 8: Techniques for analyzing algorithms
	Slide 9: Techniques for analyzing algorithms
	Slide 10: Techniques for analyzing algorithms
	Slide 11: Techniques for analyzing algorithms
	Slide 12: Techniques for analyzing algorithms
	Slide 13: Techniques for analyzing algorithms
	Slide 14: Techniques for analyzing algorithms
	Slide 15: Techniques for analyzing algorithms
	Slide 16: Techniques for analyzing algorithms
	Slide 17: Techniques for analyzing algorithms
	Slide 18: Techniques for analyzing algorithms
	Slide 19: Techniques for analyzing algorithms
	Slide 20: Techniques for analyzing algorithms
	Slide 21: Techniques for analyzing algorithms
	Slide 22: Techniques for analyzing algorithms
	Slide 23: Techniques for analyzing algorithms
	Slide 24: Techniques for analyzing algorithms
	Slide 25: Typical complexities of algorithms
	Slide 26: Typical complexities of algorithms
	Slide 27: Special techniques for analysis of algorithms
	Slide 28: Special techniques for analysis of algorithms
	Slide 29: Special techniques for analysis of algorithms
	Slide 30: Special techniques for analysis of algorithms
	Slide 31: Questions and exercises:
	Slide 32: Thank you for your attention!

	M3_T2_L1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: DIVIDE AND CONQUER PARADIGM IN ALGORITHMS
	Slide 3: History
	Slide 4: Paradigm of design divide and conquer
	Slide 5
	Slide 6
	Slide 7: Examples of divide and conquer
	Slide 8: Divide and conquer
	Slide 9: Divide and conquer
	Slide 10: Divide and conquer
	Slide 11: Divide and conquer
	Slide 12: Divide and conquer
	Slide 13: Divide and conquer
	Slide 14: Divide and conquer
	Slide 15: Divide and conquer
	Slide 16: Divide and conquer
	Slide 17: Divide and conquer
	Slide 18: Divide and conquer
	Slide 19: Divide and conquer
	Slide 20: Divide and conquer
	Slide 21: Divide and conquer
	Slide 22: Divide and conquer
	Slide 23: Divide and conquer
	Slide 24: Divide and conquer
	Slide 25: Divide and conquer
	Slide 26: Divide and conquer
	Slide 27: Divide and conquer
	Slide 28: Divide and conquer
	Slide 29: Divide and conquer
	Slide 30: Divide and conquer
	Slide 31: Divide and conquer
	Slide 32: Divide and conquer
	Slide 33: Divide and conquer
	Slide 34: Divide and conquer
	Slide 35: Questions and exercises:
	Slide 36

	M3_T2_L2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: DYNAMIC PROGRAMMING
	Slide 3: Dynamic Programming
	Slide 4: Dynamic Programming
	Slide 5: Dynamic Programming
	Slide 6: Dynamic Programming
	Slide 7: Dynamic Programming
	Slide 8: Dynamic Programming
	Slide 9: Dynamic Programming
	Slide 10: Dynamic Programming
	Slide 11: Dynamic Programming
	Slide 12: Dynamic Programming
	Slide 13: Dynamic Programming
	Slide 14: Dynamic Programming
	Slide 15: Knapsack problem
	Slide 16: Knapsack problem
	Slide 17: Knapsack problem
	Slide 18: Knapsack problem
	Slide 19: Knapsack problem
	Slide 20: Knapsack problem
	Slide 21: Fibonacci numbers
	Slide 22: Fibonacci numbers
	Slide 23: Fibonacci numbers
	Slide 24: Fibonacci numbers
	Slide 25: Fibonacci: Top-Down vs Bottom-Up Dynamic Programming
	Slide 26: Fibonacci: Top-Down vs Bottom-Up Dynamic Programming
	Slide 27: Fibonacci: Top-Down vs Bottom-Up Dynamic Programming
	Slide 28: Questions and exercises:
	Slide 29

	M3_T2_L3
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: HEURISTIC AND PROBABILISTIC (RANDOMIZED) ALGORITHMS
	Slide 3: Heuristic and probabilistic algorithms
	Slide 4: Heuristic and probabilistic algorithms
	Slide 5: Heuristic and probabilistic algorithms
	Slide 6: Heuristic and probabilistic algorithms
	Slide 7: Heuristic and probabilistic algorithms
	Slide 8: Heuristic and probabilistic algorithms
	Slide 9: Heuristic and probabilistic algorithms
	Slide 10: Heuristic and probabilistic algorithms
	Slide 11: Greedy algorithms
	Slide 12: Greedy algorithms
	Slide 13: Greedy algorithms
	Slide 14: Greedy algorithms
	Slide 15: Greedy algorithms
	Slide 16: Greedy algorithms
	Slide 17: Greedy algorithms
	Slide 18: Greedy algorithms
	Slide 19: Genetic algorithms
	Slide 20: Genetic algorithms
	Slide 21: Genetic algorithms
	Slide 22: Genetic algorithms
	Slide 23: Using Heuristics in Query Optimization
	Slide 24: Using Heuristics in Query Optimization
	Slide 25: Questions and exercises:
	Slide 26

	M3_T2_L4
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: GREEDY ALGORITHMS. EXAMPLES.
	Slide 3: Greedy Algorithms
	Slide 4: Greedy Algorithms
	Slide 5: Greedy Algorithms
	Slide 6: Greedy Algorithms
	Slide 7: Greedy Algorithms
	Slide 8: Greedy Algorithms
	Slide 9: Greedy Algorithms
	Slide 10: Greedy Algorithms
	Slide 11: Greedy Algorithms
	Slide 12: Greedy Algorithms
	Slide 13: Greedy Algorithms
	Slide 14: Greedy Algorithms
	Slide 15: Greedy Algorithms
	Slide 16: Greedy Algorithms
	Slide 17: Greedy Algorithms
	Slide 18: Greedy Algorithms
	Slide 19: Greedy Algorithms
	Slide 20: Greedy Algorithms
	Slide 21: Greedy Algorithms
	Slide 22: Greedy Algorithms
	Slide 23: Greedy Algorithms
	Slide 24: Greedy Algorithms
	Slide 25: Greedy Algorithms
	Slide 26: Questions and exercises:
	Slide 27

	M3_T3_L1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: Sorting Part I Sorting algorithms. Insertion sort. Selection sort. Bubble method.
	Slide 3: Sorting
	Slide 4: Sorting
	Slide 5: Sorting
	Slide 6: Sorting
	Slide 7: Comparison sorting
	Slide 8: Comparison sorting
	Slide 9: Comparison sorting
	Slide 10: Comparison sorting
	Slide 11: Insertion sorting
	Slide 12: Insertion sorting
	Slide 13: Insertion sorting
	Slide 14: Insertion sorting
	Slide 15: Insertion sorting
	Slide 16: Sorting by direct selection method
	Slide 17: Sorting by direct selection method
	Slide 18: Sorting by direct selection method
	Slide 19: Bubble sort method
	Slide 20: Bubble sort method
	Slide 21: Bubble sort method
	Slide 22: Bubble sort method
	Slide 23: Bubble sort method
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Questions and exercises:
	Slide 28

	M3_T3_L2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: SORTING PART II Linear time sort. Quick sort. Merge sort. Heap sort.
	Slide 3: Sorting
	Slide 4: Quicksort
	Slide 5: Quicksort
	Slide 6: Quicksort
	Slide 7: Quicksort
	Slide 8: Quicksort
	Slide 9: Quicksort
	Slide 10: Quicksort
	Slide 11: Quicksort
	Slide 12: Quicksort
	Slide 13: Quicksort
	Slide 14: Quicksort
	Slide 15: Quicksort
	Slide 16: Quicksort
	Slide 17: Mergesort
	Slide 18: Mergesort
	Slide 19: Mergesort
	Slide 20: Mergesort
	Slide 21: Mergesort
	Slide 22: Mergesort
	Slide 23: Mergesort
	Slide 24: Heapsort
	Slide 25: Heapsort
	Slide 26: Heapsort
	Slide 27: Sorting
	Slide 28: Sorting
	Slide 29: Sorting - conclusions
	Slide 30: Sorting - conclusions
	Slide 31: Questions and exercises:
	Slide 32

	M3_T4_L1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: INTRODUCTION TO GRAPH ALGORITHMS
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: And so! What Is A Graph?
	Slide 7: Graphs in Everyday Life
	Slide 8: Examples
	Slide 9
	Slide 10: Vertex, Edge, Label, and Weight
	Slide 11: Examples
	Slide 12: Connections
	Slide 13: Examples
	Slide 14: Paths and Cycles
	Slide 15: Examples
	Slide 16: Directed Graphs (Digraphs)
	Slide 17: Directed Acyclic Graphs (DAGs)
	Slide 18: Directed and Undirected Graphs
	Slide 19: Sparse and Unsparse Graphs
	Slide 20: Adjacent Vertices
	Slide 21: Incident Edges
	Slide 22: Presentation of graphs
	Slide 23: Presentation of graphs
	Slide 24: Graph traversal
	Slide 25: Graph traversal
	Slide 26: Graph traversal
	Slide 27: Graph traversal
	Slide 28: Graph traversal
	Slide 29: Graph traversal
	Slide 30: Graph traversal application in DB
	Slide 31: Questions and exercises:
	Slide 32

	M3_T4_L2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: TREE COVER OF GRAPHS
	Slide 3: Problem: Laying Telephone Wire
	Slide 4: Wiring: Naive Approach
	Slide 5: Wiring: Better Approach
	Slide 6: Cover trees
	Slide 7: Cover trees
	Slide 8: Cover trees
	Slide 9: Cover trees
	Slide 10: Cover trees
	Slide 11: Cover trees
	Slide 12: Cover trees
	Slide 13: Cover trees
	Slide 14: Cover trees
	Slide 15: Cover trees
	Slide 16: Cover trees
	Slide 17: Cover trees
	Slide 18: Cover trees
	Slide 19: Cover trees
	Slide 20: Cover trees
	Slide 21: Cover trees
	Slide 22: Cover trees
	Slide 23: Cover trees
	Slide 24: Cover trees
	Slide 25: Questions and exercises:
	Slide 26

	M3_T4_L3
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: SHORTEST PATHS ALGORITHMS
	Slide 3: Introduction
	Slide 4: Shortest paths in graphs
	Slide 5: Shortest paths in graphs
	Slide 6: Shortest paths in graphs
	Slide 7: Shortest paths in graphs
	Slide 8: Shortest paths in graphs
	Slide 9: Dijkstra's algorithm
	Slide 10: Dijkstra's algorithm
	Slide 11: Dijkstra's algorithm
	Slide 12: Dijkstra's algorithm
	Slide 13: Dijkstra's algorithm
	Slide 14: Dijkstra's algorithm
	Slide 15: Dijkstra's algorithm
	Slide 16: Dijkstra's algorithm
	Slide 17: Dijkstra's algorithm
	Slide 18: Dijkstra's algorithm
	Slide 19: Dijkstra's algorithm
	Slide 20: Dijkstra's algorithm
	Slide 21: Dijkstra's algorithm
	Slide 22: Dijkstra's algorithm
	Slide 23: Dijkstra's algorithm
	Slide 24: Bellman–Ford algorithm
	Slide 25: Bellman–Ford algorithm
	Slide 26: Bellman–Ford algorithm
	Slide 27: Bellman–Ford algorithm
	Slide 28: Graph traversal application in DB
	Slide 29: Questions and exercises:
	Slide 30

	M3_T4_L4
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: MAXIMUM FLOW GRAPH
	Slide 3: Outline
	Slide 4: Network Flow Definitions
	Slide 5: Flow Example
	Slide 6: Introduction
	Slide 7: Introduction
	Slide 8: Flow networks
	Slide 9: Flow networks
	Slide 10: Flow networks
	Slide 11: Ford-Fulkerson method
	Slide 12: Ford-Fulkerson method
	Slide 13: Ford-Fulkerson method
	Slide 14: Ford-Fulkerson method
	Slide 15: Ford-Fulkerson method
	Slide 16: Ford-Fulkerson method
	Slide 17: Ford-Fulkerson method
	Slide 18: Ford-Fulkerson method
	Slide 19: Ford-Fulkerson method
	Slide 20: Ford-Fulkerson method
	Slide 21: Ford-Fulkerson method
	Slide 22: Ford-Fulkerson method
	Slide 23: Ford-Fulkerson method
	Slide 24: Ford-Fulkerson method
	Slide 25: Ford-Fulkerson method
	Slide 26: Ford-Fulkerson method
	Slide 27: Ford-Fulkerson method
	Slide 28: Questions and exercises:
	Slide 29

	M4_T1_L1
	Slide 1: ON-LINE DISTANCE COURSE ON BIOINFORMATICS
	Slide 2
	Slide 3: Contents
	Slide 4: Introduction
	Slide 5
	Slide 6: Physical Properties
	Slide 7: Chemical Properties
	Slide 8: Chemical Properties
	Slide 9: Chemical Properties
	Slide 10: Structure of Amino acids
	Slide 11: Classification of amino acids on the basis of R-group
	Slide 12: Classification of amino acids on the basis of R-group
	Slide 13: Classification of amino acids on the basis of nutrition
	Slide 14: Classification of amino acids on the basis of nutrition
	Slide 15: Classification of amino acids on the basis of the metabolic fate
	Slide 16: Classification of amino acids on the basis of the metabolic fate
	Slide 17: Functions of Amino acids
	Slide 18: Functions of Amino acids
	Slide 19: Review Questions
	Slide 20

	M4_T1_L2
	Slide 1: ON-LINE DISTANCE COURSE ON BIOINFORMATICS
	Slide 2
	Slide 3: Contents
	Slide 4: Introduction
	Slide 5: The Shape of a Protein Is Specified by Its Amino Acid Sequence
	Slide 6: The Shape of a Protein Is Specified by Its Amino Acid Sequence
	Slide 7: The Shape of a Protein Is Specified by Its Amino Acid Sequence
	Slide 8: The Shape of a Protein Is Specified by Its Amino Acid Sequence
	Slide 9: Proteins Fold into a Conformation of Lowest Energy
	Slide 10: The α Helix and the β Sheet Are Common Folding Patterns
	Slide 11: The α Helix and the β Sheet Are Common Folding Patterns
	Slide 12: The Protein Domain Is a Fundamental Unit of Organization
	Slide 13: The Protein Domain Is a Fundamental Unit of Organization
	Slide 14: Proteins Can Be Classified into Many Families
	Slide 15: Proteins Can Be Classified into Many Families
	Slide 16: Proteins Can Be Classified into Many Families
	Slide 17: Sequence Homology Searches Can Identify Close Relatives
	Slide 18: Some Protein Domains, Called Modules, Form Parts of Many Different Proteins
	Slide 19: Some Protein Domains, Called Modules, Form Parts of Many Different Proteins
	Slide 20: Review Questions
	Slide 21

	M4_T2_L1
	Slide 1: ON-LINE DISTANCE COURSE ON BIOINFORMATICS
	Slide 2
	Slide 3: Contents
	Slide 4: Introduction
	Slide 5: Biological Databases
	Slide 6: Uses of biological Databases
	Slide 7: Some examples of global collaborations established to manage the public record of different biological data types
	Slide 8: Primary databases
	Slide 9: Primary databases
	Slide 10: Primary databases
	Slide 11: Secondary databases
	Slide 12: Essential aspects of primary and secondary databases
	Slide 13: SWISS-PROT
	Slide 14: PROSITE
	Slide 15: Pfam
	Slide 16: PRINTS
	Slide 17: Applications of Secondary Databases
	Slide 18: Composite Databases (Hybrid databases and families of databases)
	Slide 19: Hybrid databases and families of databases
	Slide 20: Review Questions
	Slide 21

	M4_T2_L2
	Slide 1: ON-LINE DISTANCE COURSE ON BIOINFORMATICS
	Slide 2
	Slide 3: Contents
	Slide 4: Introduction
	Slide 5: Terminology
	Slide 6: Atlases
	Slide 7: Atlases
	Slide 8: The RCSB PDB
	Slide 9: The RCSB PDB - atlas page
	Slide 10: The RCSB PDB - Sequence details page
	Slide 11: The PDBe
	Slide 12: The PDBe - The AstexViewerTM
	Slide 13: OCA
	Slide 14: PDBsum
	Slide 15: Pfam Domain Diagrams and Domain Architecture Networks
	Slide 16: Secondary Structure and Topology Diagrams
	Slide 17: Intermolecular Interactions
	Slide 18: Intermolecular Interactions
	Slide 19: Homology model servers
	Slide 20: Review Questions
	Slide 21

	M4_T3_L1
	Slide 1: ON-LINE DISTANCE COURSE ON BIOINFORMATICS
	Slide 2
	Slide 3: Contents
	Slide 4: Introduction
	Slide 5: Genome Data Management
	Slide 6: Genomic Databases
	Slide 7: Relational databases
	Slide 8: Object-oriented databases
	Slide 9: Commercial Databases
	Slide 10: Existing Genome Databases
	Slide 11: Nucleotide Databases
	Slide 12: Nucleotide Databases
	Slide 13: International Nucleotide Sequence Database
	Slide 14: GenBank
	Slide 15: European Molecular Biology Laboratory (EMBL)
	Slide 16: DNA Data Bank of Japan (DDBJ)
	Slide 17: Genome Sequence Archive (GSA)
	Slide 18: Single Nucleotide Polymorphism database (dbSNP)
	Slide 19: Nucleic Acid Database (NDB)
	Slide 20: Intermolecular Interactions
	Slide 21: Homology model servers
	Slide 22: Review Questions
	Slide 23

	M4_T3_L2
	Slide 1: ON-LINE DISTANCE COURSE ON BIOINFORMATICS
	Slide 2
	Slide 3: Contents
	Slide 4: Introduction
	Slide 5: Applications of gene database
	Slide 6: Basic Local Alignment Search Tool (BLAST)
	Slide 7: There are several types of BLAST searches. NCBI's WebBLAST offers four main search types
	Slide 8: There are several types of BLAST searches. NCBI's WebBLAST offers four main search types
	Slide 9: Sources of errors that affect sequence records, categorized into three broad classes
	Slide 10: Example of how a network perspective can help inform outlier detection. (A) A collection of records, with the grey circles indicating records marked as Caenorhabditis elegans, while the blue circles are marked as Homo sapien. The lines indicate
	Slide 11: Distribution of sequence identity between bacterial protein records from GenBank that have annotated EC terms and their their nearest experimentally validated sequence in UniProt. The black dashed line highlights poor similarity (below 35%), wit
	Slide 12: Nucleotide Databases
	Slide 13: Network-based anomaly detection
	Slide 14: Major types of high-throughput data and their key information relevant to drug discovery. Metabolomic data belong to cheminformatics and are not included.
	Slide 15: Disease understanding
	Slide 16: Fundamentals of single-cell RNA sequencing
	Slide 17: How single-cell sequencing can inform decisions across the drug discovery and development pipeline
	Slide 18: Computational methods used in single-cell data analysis for drug discovery and development
	Slide 19: Single-cell RNA sequencing in disease understanding
	Slide 20: Review Questions
	Slide 21

	M4_T4_L1
	Slide 1: ON-LINE DISTANCE COURSE ON BIOINFORMATICS
	Slide 2
	Slide 3: Contents
	Slide 4: Introduction
	Slide 5: KEGG Database
	Slide 6: Glycolysis / Gluconeogenesis - Reference pathway
	Slide 7: KEGG now
	Slide 8: Compounds
	Slide 9: Mol Files
	Slide 10: Example Mol file for Pyruvate
	Slide 11: Pros/Cons of Mol files?
	Slide 12: KCF (KEGG Chemical Function) Format
	Slide 13: KEGG Atom Types for C species
	Slide 14: KEGG Atom Types for N
	Slide 15: Full Listing of KEGG Atom Types
	Slide 16: Reactions
	Slide 17: KEGG Orthology
	Slide 18: KEGG reaction classes
	Slide 19: Connecting the Chemical and Genetic information
	Slide 20: Review Questions
	Slide 21

	M4_T4_L2
	Slide 1: ON-LINE DISTANCE COURSE ON BIOINFORMATICS
	Slide 2
	Slide 3: Contents
	Slide 4: Introduction
	Slide 5: Architecture of KEGG website
	Slide 6
	Slide 7: BlastKOALA tools
	Slide 8: KEGG mapper tools
	Slide 9: KEGG pathway maps for non-small cell lung cancer (hsa05223)
	Slide 10: KEGG pathway maps for (B) EGFR tyrosine kinase inhibitor resistance (hsa01521).
	Slide 11: KEGG Mapper tools
	Slide 12: KEGG modules
	Slide 13: Genome annotation in KEGG
	Slide 14: Genome comparison and combination
	Slide 15: Comparison of metabolic pathways reconstructed from the complete genomes of Homo sapiens (hsa) and E. coli (eco)
	Slide 16: Knowledge base extension
	Slide 17: Disease/drug mapping is the process to map all known disease genes (pink) and all known drug targets (light blue) against all KEGG pathway maps
	Slide 18: Naming convention of KEGG molecular networks
	Slide 19: Accessing KEGG
	Slide 20: Review Questions
	Slide 21

	M5_T1_PL1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: Practical lesson. Basic concepts in databases. Introduction to the computer program MS Access.
	Slide 3: What is a database?
	Slide 4: What is a database?
	Slide 5: What is a database?
	Slide 6: Introduction to MS Access
	Slide 7: Introduction to MS Access
	Slide 8: Introduction to MS Access
	Slide 9: Introduction to MS Access
	Slide 10: Introduction to MS Access
	Slide 11: Introduction to MS Access
	Slide 12: Introduction to MS Access
	Slide 13: Introduction to MS Access
	Slide 14: Introduction to MS Access
	Slide 15: Introduction to MS Access
	Slide 16: Introduction to MS Access
	Slide 17: Introduction to MS Access
	Slide 18: Introduction to MS Access
	Slide 19: Introduction to MS Access
	Slide 20: Introduction to MS Access
	Slide 21: Introduction to MS Access
	Slide 22: Basic tasks for an Access desktop database
	Slide 23: Basic tasks for an Access desktop database
	Slide 24: Basic tasks for an Access desktop database
	Slide 25: Basic tasks for an Access desktop database
	Slide 26: Basic tasks for an Access desktop database
	Slide 27: Basic tasks for an Access desktop database
	Slide 28: Basic tasks for an Access desktop database
	Slide 29: Basic tasks for an Access desktop database
	Slide 30: Basic tasks for an Access desktop database
	Slide 31: Basic tasks for an Access desktop database
	Slide 32: Basic tasks for an Access desktop database
	Slide 33: Basic tasks for an Access desktop database
	Slide 34: Basic tasks for an Access desktop database
	Slide 35: Еxercises
	Slide 36

	M5_T1_PL2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: Practical lesson: Use of tables and subforms. Using filters and reports.
	Slide 3: Introduction
	Slide 4: Using tables
	Slide 5: Using tables
	Slide 6: Using tables
	Slide 7: Using tables
	Slide 8: Using tables
	Slide 9: About subforms
	Slide 10: About subforms
	Slide 11: About subforms
	Slide 12: About subforms
	Slide 13: About subforms
	Slide 14: About subforms
	Slide 15: About subforms
	Slide 16: Create or add a subform
	Slide 17: Create a form that contains a subform by using the Form Wizard
	Slide 18: Create a form that contains a subform by using the Form Wizard
	Slide 19: Create a form that contains a subform by using the Form Wizard
	Slide 20: Create a form that contains a subform by using the Form Wizard
	Slide 21: Create a form that contains a subform by using the Form Wizard
	Slide 22: Add one or more subforms to an existing form by using the SubForm Wizard
	Slide 23: Create a subform by dragging one form onto another
	Slide 24: Open a subform in a new window in Design view
	Slide 25: Change the default view of a subform
	Slide 26: Change the default view of a subform
	Slide 27: Reports in MS Access
	Slide 28: Reports in MS Access
	Slide 29: Reports in MS Access
	Slide 30: Reports in MS Access
	Slide 31: Reports in MS Access
	Slide 32: Filter data in a report
	Slide 33: Filter data in a report
	Slide 34: Filter data in a report
	Slide 35: Filter data in a report
	Slide 36: Filter data in a report
	Slide 37: Еxercises
	Slide 38

	M5_T2_PL1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: Practical lesson: Maintaining database changes.
	Slide 3: Introduction
	Slide 4: What is good database design?
	Slide 5: What is good database design?
	Slide 6: The design process
	Slide 7: The design process
	Slide 8: Determining the purpose of your database
	Slide 9: Finding and organizing the required information
	Slide 10: Finding and organizing the required information
	Slide 11: Finding and organizing the required information
	Slide 12: Dividing the information into tables
	Slide 13: Dividing the information into tables
	Slide 14: Dividing the information into tables
	Slide 15: Turning information items into columns
	Slide 16: Turning information items into columns
	Slide 17: Specifying primary keys
	Slide 18: Specifying primary keys
	Slide 19: Specifying primary keys
	Slide 20: Specifying primary keys
	Slide 21: Specifying the type of data
	Slide 22: Specifying the type of data
	Slide 23: Specifying the type of data
	Slide 24: Creating the table relationships
	Slide 25: Creating a one-to-many relationship
	Slide 26: Creating a one-to-many relationship
	Slide 27: Creating a many-to-many relationship
	Slide 28: Creating a many-to-many relationship
	Slide 29: Creating a many-to-many relationship
	Slide 30: Creating a one-to-one relationship
	Slide 31: Creating a one-to-one relationship
	Slide 32: Refining the design
	Slide 33: Applying the normalization rules
	Slide 34: Еxercises
	Slide 35

	M5_T2_PL2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: Practical lesson: Ensuring the reliability of information in the database.
	Slide 3: Introduction
	Slide 4: Introduction
	Slide 5: Decide whether to trust a database
	Slide 6: Factors to consider when deciding whether to trust a database
	Slide 7: Factors to consider when deciding whether to trust a database
	Slide 8: Ways to share an Access desktop database
	Slide 9: Ways to share an Access desktop database
	Slide 10: Ways to share an Access desktop database
	Slide 11: Ways to share an Access desktop database
	Slide 12: Ways to share an Access desktop database
	Slide 13: Ways to share an Access desktop database
	Slide 14: Ways to share an Access desktop database
	Slide 15: Ways to share an Access desktop database
	Slide 16: Protect databases
	Slide 17: Assigning passwords to databases
	Slide 18: Assigning passwords to databases
	Slide 19: Assigning passwords to databases
	Slide 20: Assigning passwords to databases
	Slide 21: Assigning passwords to databases
	Slide 22: Preventing database problems
	Slide 23: Preventing database problems
	Slide 24: Preventing database problems
	Slide 25: Preventing database problems
	Slide 26: Preventing database problems
	Slide 27: Preventing database problems
	Slide 28: Preventing database problems
	Slide 29: Preventing database problems
	Slide 30: Key points
	Slide 31: Еxercises
	Slide 32

	M5_T3_PL1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: Practical lesson. Creation of a query.
	Slide 3: Introduction to queries
	Slide 4: Introduction to queries
	Slide 5: Introduction to queries
	Slide 6: Create a select query
	Slide 7: Create a select query
	Slide 8: Create a select query
	Slide 9: Use the Query Wizard to create a select query
	Slide 10: Use the Query Wizard to create a select query
	Slide 11: Use the Query Wizard to create a select query
	Slide 12: Use the Query Wizard to create a select query
	Slide 13: Use the Query Wizard to create a select query
	Slide 14: Use the Query Wizard to create a select query
	Slide 15: Create an update query
	Slide 16: Create an update query
	Slide 17: Create an update query
	Slide 18: Create a delete query
	Slide 19: Create a delete query
	Slide 20: Create a delete query
	Slide 21: Create a delete query
	Slide 22: Create a delete query
	Slide 23: Create a delete query
	Slide 24: Examples:
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: SQL View in Access
	Slide 49: SQL View in Access
	Slide 50: SQL statements
	Slide 51: SQL statements
	Slide 52: SQL statements
	Slide 53: Query Design View
	Slide 54: The Query Results
	Slide 55: Еxercises
	Slide 56

	M5_T3_PL2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: Practical lesson. Use of queries.
	Slide 3: How are queries used?
	Slide 4: Run a query
	Slide 5: Run a query
	Slide 6: Run a query
	Slide 7: Run a query
	Slide 8: Run a query
	Slide 9: Run a query
	Slide 10: Run a query
	Slide 11: Run a query
	Slide 12: Run a query
	Slide 13: Run a query
	Slide 14: Run a query
	Slide 15: Run a query
	Slide 16: Run a query
	Slide 17: Run a query
	Slide 18: Run a query
	Slide 19: Run a query
	Slide 20: Run a query
	Slide 21: Run a query
	Slide 22: Use a query as the record source for a form or report
	Slide 23: Use a query as the record source for a form or report
	Slide 24: Use a query as the record source for a form or report
	Slide 25: Examples of query criteria
	Slide 26: Examples of query criteria
	Slide 27: Examples of query criteria
	Slide 28: Examples of query criteria
	Slide 29: Examples of query criteria
	Slide 30: Examples of query criteria
	Slide 31: Еxercises
	Slide 32

	M5_T4_PL1
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: Practical lesson. Merging of data into one form.
	Slide 3: Introduction to forms
	Slide 4: Introduction to forms
	Slide 5: Introduction to forms
	Slide 6: Create a form by using the Form tool
	Slide 7: Create a form by using the Form tool
	Slide 8: Create a form by using the Form tool
	Slide 9: Create a form by using the Form tool
	Slide 10: Create a form by using the Form tool
	Slide 11: Create a split form by using the Split Form tool
	Slide 12: Create a split form by using the Split Form tool
	Slide 13: Create a split form by using the Split Form tool
	Slide 14: Create a form that displays multiple records by using the Multiple Items tool
	Slide 15: Create a form that displays multiple records by using the Multiple Items tool
	Slide 16: Create a form that displays multiple records by using the Multiple Items tool
	Slide 17: Create a form that displays multiple records by using the Multiple Items tool
	Slide 18: Create a form by using the Form Wizard
	Slide 19: Create a form by using the Form Wizard
	Slide 20: Create a form by using the Blank Form tool
	Slide 21: Create a form by using the Blank Form tool
	Slide 22: Create a form by using the Blank Form tool
	Slide 23: Understand Layout view and Design view
	Slide 24: Understand Layout view and Design view
	Slide 25: Fine-tune your form in Layout view
	Slide 26: Fine-tune your form in Layout view
	Slide 27: Fine-tune your form in Design view
	Slide 28: Fine-tune your form in Design view
	Slide 29: Create a tabbed form
	Slide 30: Create a tabbed form
	Slide 31: Create a tabbed form
	Slide 32: Create a tabbed form
	Slide 33: Merge Tables In Access Database:
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55: Еxercises
	Slide 56

	M5_T4_PL2
	Slide 1: ON-LINE DISTANCE COURSE ON DATABASES
	Slide 2: Practical lesson. Presentation of an effective report.
	Slide 3: Introduction to reports in Access
	Slide 4: Introduction to reports in Access
	Slide 5: Introduction to reports in Access
	Slide 6: Introduction to reports in Access
	Slide 7: Create a report in Access
	Slide 8: Create a report in Access
	Slide 9: Create a report in Access
	Slide 10: Add grouping, sorting, or totals
	Slide 11: Highlight data with conditional formatting
	Slide 12: Customizing color and fonts
	Slide 13: Add a logo or background image
	Slide 14: Preview a report
	Slide 15: Print a report
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Guide to designingе effective reports
	Slide 31: Guide to designingе effective reports
	Slide 32: Guide to designingе effective reports
	Slide 33: Guide to designingе effective reports
	Slide 34: Guide to designingе effective reports
	Slide 35: Guide to designingе effective reports
	Slide 36: Guide to designingе effective reports
	Slide 37: Guide to designingе effective reports
	Slide 38: Guide to designingе effective reports
	Slide 39: Use control layouts to align your data
	Slide 40: Add or remove report or page header and footer sections
	Slide 41: Add or remove report or page header and footer sections
	Slide 42: Add or remove report or page header and footer sections
	Slide 43: Tips for formatting different data types
	Slide 44: Tips for formatting different data types
	Slide 45: Good sample report
	Slide 46: Еxercises
	Slide 47

